
COST Action IC1405
Reversible Computation

Extending Horizons of Computing

Working Group 2 - Software and
Systems

Year-End Report

Editors:
Claudio Antares Mezzina and Rudolf Schlatte

Contributors :
Paola Giannini, James Hoey, Ivan Lanese,

Claudio Antares Mezzina, Jaroslaw Miszczak,
Rumyana Neykova, Jorge A. Pérez, Ulrik Schultz,

Harun Siljak, Irek Ulidowski, German Vidal

May 2019

1



1 Introduction
In this document we report the research activity that the Working Group 2
(WG2) on Software and System has actively carried out during the last 3 years
of the Action. According to the Action’s Memorandum of Understanding [35]
the WG2 mission is to provide linguistic abstractions, languages and tools to
develop safer and more reliable applications. To do so, one of the main objective
is to exploit reversibility to define actual reliability constructs and frameworks
for programming reliable applications. This implies on one hand to integrate
reversibility with mainstream programming languages and well know paradigms
and on the other hand to understand what is the connection between reversibil-
ity and established techniques to achieve reliability such as transactions and
checkpointing. Lastly, WG2 topics also include reversibility in robotics and
control theory.

Progress of the WG. This document builds on the year two [25] and year
three [26] reports, by recalling their content and structure. The idea is to create
a whole document which witness the activity of the WG2 in the period 2016-
2019. For an exhaustive analysis on the state of the art on the main topics of
the Action we refer to [27]. Here we report the improvements of the state of the
art with respect of the following topics:

• type systems, with a special focus on behavioural types (e.g., session types)

• mainstream languages (e.g., Erlang [1])

• modularity aspects such as classes, objects and components

• recovery techniques in massage passing concurrency model

• shared memory systems

• quantum computing

• control theory

2 Session Types
The interest in session types stems from the fact that working with a system
whose behaviour (in terms of communications) is strongly disciplined by a type
theory is easier.

Reversibility and monitored semantics for binary session types has been re-
cently studied by Mezzina and Pérez [30, 28]. In their works, they propose a
monitor as memory mechanism in which information about the monitor of a
process can be used to enable its reversibility. Moreover, by adding modalities
information at the level of session types, reversibility can be controlled.

In the context of multiparty session types, global types describe the message-
passing behaviour of a set of participants in a system from a global point of view.
A global type can be projected onto each participant so as to obtain local types,
which describe individual contributions to the global protocol. The work [29]
extends global and local types to keep track of the stage of the protocol that

2



has been already executed; this enables reversible steps in an elegant way. The
authors develop a rigorous process framework for multiparty communication,
which improves over prior works by featuring asynchrony, decoupled rollbacks
and process passing. In this framework, concurrent processes are untyped but
their forward and backward steps is governed by monitors. The main tech-
nical result is that the developed multiparty reversible semantics is causally-
consistent. Finally, [7] proposes a Haskell implementation of the asynchronous
reversible operational semantics for multiparty session types proposes in [29].
The implementation exploits algebraic data types to faithfully represent three
core ingredients: a process calculus, multiparty session types, and forward and
backward reduction semantics. This implementation bears witness to the con-
venience of pure functional programming for implementing reversible languages.

In a series of works [8, 5] multiparty session types (aka global types) have
been enriched with checkpoint labels on choices that mark points of the protocol
where the computations may roll back. In [8] a simple model in which rollback
could be done any time after a participant had crossed the checkpointed choice.
In [5] a more refined model is presented, in which the programmer can define
points where the computation may revert to a checkpointed label, and rollback
has to be triggered by the participant that made the decision.

Behavioural contracts are abstract descriptions of expected communication
patterns followed by either clients or servers during their interaction. Be-
havioural contracts come naturally equipped with a notion of compliance: when
a client and a server follow compliant contracts, their interaction is guaranteed
to progress or successfully complete. In [3] two extensions of behavioural con-
tracts, retractable contracts dealing with backtracking and speculative contracts
dealing with speculative execution are studied. The two extensions give rise to
the same notion of compliance. As a consequence, they also give rise to the
same subcontract relation, which determines when one server can be replaced
by another preserving compliance. Moreover, compliance and subcontract re-
lation are both decidable in quadratic time. Finally, the relationship between
retractable contracts and calculi for reversible computing is studied.

3 Erlang
A formal reversible causal semantics for (core) Erlang has been presented in
[23]. Then, on top of it a rollback operator is built, which can be used to undo
the actions of a process up to a given checkpoint. By exploiting this causal
semantics and the rollback operator, the first reversible debugger for Erlang is
presented in [22]. The debugger may help programmers to detect and fix various
kinds of bugs, including message order violations and livelocks.

Debugging of concurrent systems is a tedious and error-prone activity. A
main issue is that there is no guarantee that a bug that appears in the original
computation is replayed inside the debugger. This problem is usually tackled
by so-called replay debugging, which allows the user to record a program exe-
cution and replay it inside the debugger. In [24] a novel technique for replay
debugging called controlled causal-consistent replay is presented. Controlled
causal-consistent replay allows the user to record a program execution and, in
contrast to traditional replay debuggers, to reproduce a visible misbehaviour
inside the debugger including all and only its causes. In this way, the user is

3



not distracted by the actions of other, unrelated processes.

4 Modularity Aspects
Initial ideas for the design and implementation of reversible object-oriented lan-
guage have been presented, based on extending Janus with object-oriented con-
cepts such as classes that encapsulate behavior and state, inheritance, virtual
dispatching, as well as constructors. Schultz and Axelsen showed that virtual
dispatching can be seen as reversible decision mechanism that is easily trans-
latable to a standard reversible programming model such as Janus, and argued
that reversible management of state can be accomplished using reversible con-
structors [33]. These concepts were informally described and implemented by
source-to-source translation from the reversible object-oriented language Joule
to Janus. A similar design was adopted for the ROOP reversible object-oriented
language, but fully formalized and implemented by compiling to the Pendulum
reversible ISA [17, 18]. ROOP demonstrates how to generate low-level code im-
plementing reversible vtable-based dispatching, and investigates the restrictions
that must be imposed on reversible object-oriented programs to avoid run-time
aliasing checks as found in Joule. The original Joule prototype relied on static
and stack allocation of objects, which does not permit garbage-free OO pro-
gramming: common patterns such as factories are for example not possible [33].
The initial presentation of the ROOPL language relied exclusively on stack al-
location [18], but has subsequently been extended with a heap-based memory
manager [6] — this is however a significantly more complex system that may
not be entirely garbage-free [2].

In [11] reversibility in the field of component-based language is studied.

5 Recovery
Distributed programs are hard to get right because they are required to be
open, scalable, long-running, and tolerant to faults. In particular, the recent
approaches to distributed software based on (micro-)services where different
services are developed independently by disparate teams exacerbate the prob-
lem. In fact, services are meant to be composed together and run in open
context where unpredictable behaviours can emerge. This makes it necessary to
adopt suitable strategies for monitoring the execution and incorporate recovery
and adaptation mechanisms so to make distributed programs more flexible and
robust. The typical approach that is currently adopted is to embed such mecha-
nisms in the program logic, which makes it hard to extract, compare and debug.
An approach that employs formal abstractions for specifying failure recovery and
adaptation strategies has been proposed in [4]. Although implementation ag-
nostic, these abstractions would be amenable to algorithmic synthesis of code,
monitoring and tests. Message-passing programs (à la Erlang, Go, or MPI) are
considered, since they are gaining momentum both in academia and industry.
In [9] an instance of the framework proposed in [4] is given. More precisely, this
approach imbues the communication behaviour of multi-party protocols with
minimal decorations specifying the conditions triggering monitor adaptations.
It is then shown that, from these extended global descriptions, one can (i) syn-

4



thesise actors implementing the normal local behaviour of the system prescribed
by the global graph, but also (ii) synthesise monitors that are able to coordinate
a distributed rollback when certain conditions (denoting abnormal behaviour)
are met. The synthesis algorithm produces Erlang code. More precisely, for
each role in the global description are generated two Erlang actors: one imple-
menting the normal (forward) behaviour of the system and a second one (the
monitor) in charge of implementing the reversible behaviour of the role. When
certain condition are met at runtime, then the monitors will coordinate each
other in order to bring back, if possible, the system. One interesting property
of such approach is that the two semantics are highly decoupled, meaning that
the system is always able to normally execute (e.g., going forward) even in case
of some monitor crash.

A static analysis based on multiparty session types that can efficiently com-
pute a safe global state from which a system of interacting processes should be
recovered, has been integrated with the Erlang recovery mechanism [31]. From a
global description of the program communication flow, given in multiparty pro-
tocol specification, causal dependencies between processes are extracted. This
information is then used at runtime by a recovery mechanism, integrated in Er-
lang, to determine which process has to be terminated and which one has to be
restarted upon a node failure. Experimental results indicate that the proposed
framework outperforms a built-in static recovery strategy in Erlang when a part
of the protocol can be safely recovered.

In [10] a rollback operator, based on the notion of causal-consistent reversibil-
ity, is defined for a language with shared memory. A rollback is defined as the
minimal causal-consistent sequence of backward steps able to undo a given ac-
tion. In [36] the relationship between a distributed checkpoint/rollback scheme
based on causal logging, called Manetho, and a reversible concurrent model of
computation, based on the π -calculus with imperative rollback called roll-π. A
rather tight relationship between rollback based on causal logging as performed
in Manetho and the rollback algorithm underlying roll-π. The main result is
that the latter can faithfully simulate Manetho, where the notion of simulation
we use is that of weak barbed simulation, and that the converse only holds if
possible rollbacks in are restricted.

6 Shared memory
The interplay between reversibility and imperative programming language with
shared memory is studied in [20, 21]. More in details, it is shown how to re-
verse a while language extended with blocks, local variables, procedures and
the interleaving parallel composition. Annotation is defined along with a set
of operational semantics capable of storing necessary reversal information, and
identifiers are introduced to capture the interleaving order of an execution. In-
version is defined with a set of operational semantics that use saved information
to undo an execution. It is then shown that annotation does not alter the be-
haviour of the original program, and that inversion correctly restores the initial
program state.

In [19] a state-saving approach to reversible execution of imperative pro-
grams containing parallel composition is presented. Given an original program,
we produce an annotated version of the program that both performs forwards

5



execution and all necessary state-saving of required reversal information. Fur-
ther, the authors produce an inverted version of our program, capable of using
this saved information to reverse the effects of each step of the forwards exe-
cution. Then, they show that this process implements correct and garbage-free
inversion. Finally, the performance and overheads associated with state-saving
and inversion is evaluated.

7 Quantum Computing
In [16] it is described QSWalk.jl package for Julia programming language [14],
developed to simulate the evolution of open quantum systems. The package
enables the study of reversible quantum procedures developed using stochastic
quantum walks on arbitrary directed graphs. A detailed description of the im-
plemented functions is provided along with some usage examples. The package
has been used for the purpose of determining the differences between limiting
properties in various models of quantum stochastic walks [15].

The idea of using Julia as a host language for the simulator of quantum com-
puting was motivated by the solid support for numerical procedures available in
this language. Moreover, the strong typing capabilities of Julia has been used
for developing type hierarchy for various models of quantum walks. The imple-
mentation of this hierarchy is available as a library of functions [13]. This library
has been used for proposing a framework suitable for analysing the efficiency of
attacks on quantum search algorithms [12].

8 Control Theory
Petri nets are a formalism for modelling and reasoning about the behaviour
of distributed systems. Recently, a reversible approach to Petri nets, Revers-
ing Petri Nets (RPN), has been proposed, allowing transitions to be reversed
spontaneously in or out of causal order. In [32, 34] proposes an approach for
controlling the reversal of actions of an RPN, by associating transitions with
conditions whose satisfaction/violation allows the execution of transitions in
the forward/reversed direction, respectively. We illustrate the framework with
a model of a novel, distributed algorithm for antenna selection in distributed
antenna arrays. contributed to interfacing reversible computing optimisation
and control systems, represented by Reversing Petri Nets, with the irreversible
environment, solving the problem of antenna selection in radio communications.

References
[1] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Con-

current programming in Erlang (2nd edition). Prentice Hall, 1996.

[2] Holger Bock Axelsen and Robert Glück. Reversible representation and
manipulation of constructor terms in the heap. In RC2013, pages 96–109.
Springer, 2013.

6



[3] Franco Barbanera, Ivan Lanese, and Ugo de’Liguoro. A theory of re-
tractable and speculative contracts. Sci. Comput. Program., 167:25–50,
2018.

[4] Ian Cassar, Adrian Francalanza, Claudio Antares Mezzina, and Emilio Tu-
osto. Reliability and fault-tolerance by choreographic design. In Adrian
Francalanza and Gordon J. Pace, editors, Proceedings Second Interna-
tional Workshop on Pre- and Post-Deployment Verification Techniques,
PrePost@iFM 2017, Torino, Italy, 19 September 2017., volume 254 of
EPTCS, pages 69–80, 2017.

[5] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini.
Concurrent reversible sessions. 2017.

[6] Martin Holm Cservenka. Design and implementation of dynamic memory
management in a reversible object-oriented programming language. Mas-
ter’s thesis, DIKU, University of Copenhagen, 2018.

[7] Folkert de Vries and Jorge A. Pérez. Reversible session-based concurrency
in haskell. In Michal H. Palka and Magnus O. Myreen, editors, Trends
in Functional Programming - 19th International Symposium, TFP Revised
Selected Papers, volume 11457 of Lecture Notes in Computer Science, pages
20–45. Springer, 2018.

[8] Mariangiola Dezani-Ciancaglini and Paola Giannini. Reversible multiparty
sessions with checkpoints. In EXPRESS/SOS’16, volume 222 of EPTCS,
pages 60–74, 2016.

[9] Adrian Francalanza, Claudio Antares, and Emilio Tuosto. Reversible chore-
ographies via monitoring in erlang. In Silvia Bonomi and Etienne Rivière,
editors, Distributed Applications and Interoperable Systems - 18th IFIP
WG 6.1 International Conference, DAIS 2018, Lecture Notes in Computer
Science. Springer, 2018. to appear.

[10] Elena Giachino, Ivan Lanese, Claudio Antares Mezzina, and Francesco
Tiezzi. Causal-consistent rollback in a tuple-based language. J. Log. Algebr.
Meth. Program., 88:99–120, 2017.

[11] Vaidas Giedrimas. Reversibility in component-based programming lan-
guage. In The IEEE 12th International Conference on Application of In-
formation and Communication Technologies. IEEE, 2018.

[12] A. Glos and J.A. Miszczak. Impact of the malicious input data modification
on the efficiency of quantum algorithms. arXiv:1802.10041, 2018.

[13] A. Glos and J.A. Miszczak. QuantumWalk.jl: Pack-
age for building algorithms based on quantum walks, 2018.
https://github.com/QuantumWalks/QuantumWalk.jl.

[14] A. Glos, J.A Miszczak, and M Ostaszewski. QSWalk.jl: sim-
ulating the evolution of open quantum systems on graphs, 2017.
https://github.com/QuantumWalks/QSWalk.jl.

7



[15] A. Glos, J.A. Miszczak, and M. Ostaszewski. Limit properties of global
interaction stochastic quantum walks on directed graphs. J. Phys. A: Math.
Theor, 51:035304, 2018. arXiv:1703.01792.

[16] A. Glos, J.A. Miszczak, and M. Ostaszewski. Qswalk. jl: Julia package for
quantum stochastic walks analysis. arXiv:1801.01294, 2018.

[17] T. Haulund. Design and implementation of a reversible object-oriented
programming language. Master’s thesis, University of Copenhagen, DIKU,
2016.

[18] Tue Haulund, Torben Ægidius Mogensen, and Robert Glück. Implementing
reversible object-oriented language features on reversible machines. In Iain
Phillips and Hafizur Rahaman, editors, Reversible Computation, pages 66–
73, Cham, 2017. Springer International Publishing.

[19] J. Hoey and I. Ulidowski. Reversible imperative parallel programs and
debugging. In Reversible Computation - 11th International Conference,
RC 2019, Lecture Notes in Computer Science. Springer, 2019. To appear.

[20] James Hoey, Irek Ulidowski, and Shoji Yuen. Reversing imperative parallel
programs. In Kirstin Peters and Simone Tini, editors, Proceedings Com-
bined 24th International Workshop on Expressiveness in Concurrency and
14th Workshop on Structural Operational Semantics and 14th Workshop on
Structural Operational Semantics, EXPRESS/SOS, volume 255 of EPTCS,
pages 51–66, 2017.

[21] James Hoey, Irek Ulidowski, and Shoji Yuen. Reversing parallel programs
with blocks and procedures. In Combined Proceedings of EXPRESS/SOS
2018., volume 276 of EPTCS, pages 69–86, 2018.

[22] Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal. Cauder:
A causal-consistent reversible debugger for erlang. In John P. Gallagher
and Martin Sulzmann, editors, Functional and Logic Programming - 14th
International Symposium, FLOPS 2018, Nagoya, Japan, May 9-11, 2018,
Proceedings, volume 10818 of Lecture Notes in Computer Science, pages
247–263. Springer, 2018.

[23] Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal. A theory
of reversibility for erlang. J. Log. Algebr. Meth. Program., 100:71–97, 2018.

[24] Ivan Lanese, Adrián Palacios, and Germán Vidal. Causal-consistent replay
debugging for message passing programs. In FORTE, LNCS. Springer,
2019. to appear.

[25] Claudio Antares Mezzina and Rudolf Schlatte (eds). Working Group 2,
Software and Systems, Report of the Second Year. COST Action IC1405,
Reversible Computation, 2016. http://topps.diku.dk/ic1405/
wg2_yearendreport2017.pdf.

[26] Claudio Antares Mezzina and Rudolf Schlatte (eds). Working Group 2,
Software and Systems, Report of the Third Year. COST Action IC1405, Re-
versible Computation, 2016. http://topps.diku.dk/ic1405/wg2_
yearendreport2018.pdf.

8

http://topps.diku.dk/ic1405/wg2_yearendreport2017.pdf
http://topps.diku.dk/ic1405/wg2_yearendreport2017.pdf
http://topps.diku.dk/ic1405/wg2_yearendreport2018.pdf
http://topps.diku.dk/ic1405/wg2_yearendreport2018.pdf


[27] Claudio Antares Mezzina and Rudolf Schlatte (eds). State of the art re-
port, Working Group 2, Software and Systems. COST Action IC1405,
Reversible Computation, 2017. http://topps.diku.dk/ic1405/
WG2yearendreport2017.pdf.

[28] Claudio Antares Mezzina and Jorge A. Pérez. Reversible sessions using
monitors. In Proceedings of the Ninth workshop on Programming Lan-
guage Approaches to Concurrency- and Communication-cEntric Software,
PLACES 2016, Eindhoven, The Netherlands, 8th April 2016., volume 211
of EPTCS, pages 56–64, 2016.

[29] Claudio Antares Mezzina and Jorge A. Pérez. Causally consistent reversible
choreographies: a monitors-as-memories approach. In Wim Vanhoof and
Brigitte Pientka, editors, Proceedings of the 19th International Symposium
on Principles and Practice of Declarative Programming, pages 127–138.
ACM, 2017.

[30] Claudio Antares Mezzina and Jorge Andrés Pérez. Reversible semantics in
session-based concurrency. In Proceedings of the 17th Italian Conference on
Theoretical Computer Science, Lecce, Italy, September 7-9, 2016., volume
1720 of CEUR Workshop Proceedings, pages 221–226. CEUR-WS.org, 2016.

[31] Rumyana Neykova and Nobuko Yoshida. Let It Recover: Multiparty
Protocol-Induced Recovery. In 26th International Conference on Compiler
Construction, pages 98–108. ACM, 2017.

[32] Anna Philippou, Kyriaki Psara, and Harun Siljak. Controlling reversibility
in reversing Petri nets with application to wireless communications. In
Proceedings of RC 2019. Springer, 2019.

[33] Ulrik Pagh Schultz and Holger Bock Axelsen. Elements of a reversible
object-oriented language. In Simon Devitt and Ivan Lanese, editors, Re-
versible Computation, pages 153–159, Cham, 2016. Springer International
Publishing.

[34] Harun Siljak, Kyriaki Psara, and Anna Philippou. Distributed antenna
selection for massive mimo using reversing petri nets. IEEE Wireless Com-
munications Letters (under review), 2019.

[35] Irek Ulidowski. IC1405 - Reversible Computation: extend-
ing horizons of computing - Memorandum of Understanding.
https://e-services.cost.eu/files/domain_files/ICT/
Action_IC1405/mou/IC1405-e.pdf.

[36] Martin Vassor and Jean-Bernard Stefani. Checkpoint/rollback vs causally-
consistent reversibility. In Jarkko Kari and Irek Ulidowski, editors, Re-
versible Computation, volume 11106 of Lecture Notes in Computer Science,
pages 286–303. Springer, 2018.

9

http://topps.diku.dk/ic1405/WG2yearendreport2017.pdf
http://topps.diku.dk/ic1405/WG2yearendreport2017.pdf
https://e-services.cost.eu/files/domain_files/ICT/Action_IC1405/mou/IC1405-e.pdf
https://e-services.cost.eu/files/domain_files/ICT/Action_IC1405/mou/IC1405-e.pdf

	Introduction
	Progress of the WG
	Session Types
	Erlang
	Modularity Aspects
	Recovery
	Shared memory
	Quantum Computing
	Control Theory

