
COST Action IC1405
Reversible Computation

Extending Horizons of Computing

Working Group 2 - Software and
Systems

Grant Period 2 report

Editors:
Claudio Antares Mezzina and Rudolf Schlatte

Contributors :
Paola Giannini, Rumyana Neykova, Claudio Antares

Mezzina, Ulrik Schultz, German Vidal

June 6, 2017

1



1 Introduction
In this document we report the research activity that the Working Group 2
(WG2) on Software and System has actively undertaken during the second grant
period of the Cost Action IC1405. According to the Action’s Memorandum of
Understanding [18] the WG2 mission is to provide linguistic abstractions, lan-
guages and tools to develop safer and more reliable applications. To do so, one
of the main objective is to exploit reversibility to define actual reliability con-
structs and frameworks for programming reliable applications. This implies on
one hand to integrate reversibility with mainstream programming languages and
well know paradigms and on the other hand to understand what is the connec-
tion between reversibility and established techniques to achieve reliability such
as transactions and checkpointing. Lastly, WG2 topics also include reversibility
in robotics and control theory.

2 Progress of the WG
In a previous document [12], we have reported the relevant literature for the
WG2. In this document, instead, we report the progress we have done into
achieving the WG2 objectives, and in particular the integration of reversibility
with respect to:

• modularity aspects such as classes and object

• type systems, with a special care on behavioural types (e.g., session types)

• mainstream languages (e.g., Erlang [1])

• recovery techniques in shared memory and massage passing concurrency
models

Object oriented. Initial ideas for the design and implementation of reversible
object-oriented language have been presented, based on extending Janus with
object-oriented concepts such as classes that encapsulate behavior and state,
inheritance, virtual dispatching, as well as constructors. Schultz and Axelsen
showed that virtual dispatching can be seen as reversible decision mechanism
that is easily translatable to a standard reversible programming model such
as Janus, and argued that reversible management of state can be accomplished
using reversible constructors [17]. These concepts were informally described and
implemented by source-to-source translation from the reversible object-oriented
language Joule to Janus. A similar design was adopted for the ROOP reversible
object-oriented language, but fully formalized and implemented by compiling to
the Pendulum reversible ISA [7, 8]. ROOP demonstrates how to generate low-
level code implementing reversible vtable-based dispatching, and investigates
the restrictions that must be imposed on reversible object-oriented programs to
avoid run-time aliasing checks as found in Joule.

Session Types. In a series of works [4, 3] multiparty session types (aka global
types) have been enriched with checkpoint labels on choices that mark points
of the protocol where the computations may roll back. In [4] a simple model

2



in which rollback could be done any time after a participant had crossed the
checkpointed choice. In [3] a more refined model is presented, in which the pro-
grammer can define points where the computation may revert to a checkpointed
label, and rollback has to be triggered by the participant that made the decision.

Reversibility and monitored semantics for session types has been recently
studied by Mezzina and Pérez [14, 13]. In their works, they propose a monitor
as memory mechanism in which information about the monitor of a process can
be used to enable its reversibility. Moreover, by adding modalities information
at the level of session types, reversibility can be controlled.

Erlang. Recently, [16, 10] have also introduced reversibility in the context of
the functional and concurrent programming language Erlang [1]. In particular,
a modular semantics for (a subset of) Core Erlang [2] is first introduced in [16],
which is particularly appropiate to define a reversible extension. A reversible,
uncontrolled (according to the terminology in [9]) semantics is then defined in
[10]. By defining an appropriate notion of concurrent transitions, the causal
consistency of the reversible semantics is proved. Finally, adding control to
the reversible semantics in the form of a rollback operator allows the design of
a method to undo the actions of a given process up to a given checkpoint—
introduced by the programmer. In order to ensure causal consistency, the roll-
back action might be propagated to other, dependent processes. In contrast to
previous approaches to reversibility in µOz [11, 5], a main difference is that µOz
is not distributed: messages move atomically from sender to a chosen queue,
and from the queue to the receiver. Each of the two actions is performed by a
specific thread, hence the action is naturally part of the associated thread his-
tory. In our case, message delivery is not directly performed by a thread, and
only potentially observed when the target thread performs the receive action
(but not necessarily observed, e.g., if the message does not match the patterns
in the receive). The definition of the notions of causality and concurrency in
this setting is as a consequence much more tricky than in µOz. This difficulty
carries over to the definition of the history information that needs to be tracked,
and to how this information is exploited in the reversible semantics.

Recovery. Recently [15], a static analysis based on multiparty session types
that can efficiently compute a safe global state from which a system of in-
teracting processes should be recovered, has been integrated with the Erlang
recovery mechanism. From a global description of the program communication
flow, given in multiparty protocol specification, causal dependencies between
processes are extracted. This information is then used at runtime by a recovery
mechanism, integrated in Erlang, to determine which process has to be termi-
nated and which one has to be restarted upon a node failure. Experimental
results indicate that the proposed framework outperforms a built-in static re-
covery strategy in Erlang when a part of the protocol can be safely recovered.

In [6] a rollback operator, based on the notion of causal-consistent reversibil-
ity, is defined for a language with shared memory. A rollback is defined as the
minimal causal-consistent sequence of backward steps able to undo a given ac-
tion.

3



References
[1] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Con-

current programming in Erlang (2nd edition). Prentice Hall, 1996.

[2] Richard Carlsson, Björn Gustavsson, Erik Johansson, Thomas
Lindgren, Sven-Olof Nyström, Mikael Pettersson, and
Robert Virding. Core Erlang 1.0.3. Language specification,
2004. Available from https://www.it.uu.se/research/
group/hipe/cerl/doc/core_erlang-1.0.3.pdf.

[3] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini.
Concurrent reversible sessions. 2017.

[4] Mariangiola Dezani-Ciancaglini and Paola Giannini. Reversible multiparty
sessions with checkpoints. In EXPRESS/SOS’16, volume 222 of EPTCS,
pages 60–74, 2016.

[5] Elena Giachino, Ivan Lanese, and Claudio Antares Mezzina. Causal-
consistent reversible debugging. In Stefania Gnesi and Arend Rensink,
editors, Proc. of the 17th International Conference on Fundamental Ap-
proaches to Software Engineering (FASE 2014), volume 8411 of Lecture
Notes in Computer Science, pages 370–384. Springer, 2014.

[6] Elena Giachino, Ivan Lanese, Claudio Antares Mezzina, and Francesco
Tiezzi. Causal-consistent rollback in a tuple-based language. J. Log. Algebr.
Meth. Program., 88:99–120, 2017.

[7] T. Haulund. Design and implementation of a reversible object-oriented
programming language. Master’s thesis, University of Copenhagen, DIKU,
2016.

[8] T. Haulund, T. Mogensen, and R. Glück. Implementing reversible object-
oriented language features on reversible machines. In International Con-
ference on Reversible Computation. Springer, 2017. To appear.

[9] Ivan Lanese, Claudio Antares Mezzina, and Francesco Tiezzi. Causal-
consistent reversibility. Bulletin of the EATCS, 114, 2014.

[10] Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal. A Theory
of Reversibility for Erlang, 2017. Submitted for publication.

[11] Michael Lienhardt, Ivan Lanese, Claudio Antares Mezzina, and Jean-
Bernard Stefani. A reversible abstract machine and its space overhead. In
Holger Giese and Grigore Rosu, editors, Proceedings of the Joint 14th IFIP
WG Int’l Conf. on Formal Techniques for Distributed Systems (FMOODS
2012) and the 32nd IFIP WG 6.1 International Conference (FORTE 2012),
volume 7273 of Lecture Notes in Computer Science, pages 1–17. Springer,
2012.

[12] Claudio Antares Mezzina and Rudolf Schlatte (eds). State of the art report,
Working Group 2, Software and Systems. COST Action IC1405, Reversible
Computation, 2016.

4



[13] Claudio Antares Mezzina and Jorge A. Pérez. Reversible sessions using
monitors. In Proceedings of the Ninth workshop on Programming Lan-
guage Approaches to Concurrency- and Communication-cEntric Software,
PLACES 2016, Eindhoven, The Netherlands, 8th April 2016., volume 211
of EPTCS, pages 56–64, 2016.

[14] Claudio Antares Mezzina and Jorge Andrés Pérez. Reversible semantics in
session-based concurrency. In Proceedings of the 17th Italian Conference on
Theoretical Computer Science, Lecce, Italy, September 7-9, 2016., volume
1720 of CEUR Workshop Proceedings, pages 221–226. CEUR-WS.org, 2016.

[15] Rumyana Neykova and Nobuko Yoshida. Let It Recover: Multiparty
Protocol-Induced Recovery. In 26th International Conference on Compiler
Construction, pages 98–108. ACM, 2017.

[16] Naoki Nishida, Adrián Palacios, and Germán Vidal. A Reversible Semantics
for Erlang. In Manuel Hermenegildo and Pedro López-García, editors, Proc.
of the 26th International Symposium on Logic-Based Program Synthesis
and Transformation, LOPSTR 2016, Lecture Notes in Computer Science.
Springer, 2017. To appear.

[17] U.P. Schultz and H.B. Axelsen. Elements of a reversible object-oriented
language. In International Conference on Reversible Computation, pages
153–159. Springer, 2016.

[18] Irek Ulidowski. IC1405 - Reversible Computation: extend-
ing horizons of computing - Memorandum of Understanding.
https://e-services.cost.eu/files/domain_files/ICT/
Action_IC1405/mou/IC1405-e.pdf.

5

https://e-services.cost.eu/files/domain_files/ICT/Action_IC1405/mou/IC1405-e.pdf
https://e-services.cost.eu/files/domain_files/ICT/Action_IC1405/mou/IC1405-e.pdf

	Introduction
	Progress of the WG

