
WG1 Year-End Report

COST Action IC1405 Reversible Computation

Editors: Iain Phillips and Michael Kirkedal Thomsen

May 2019

1

List of contributors

Kamila Barylska
Tim Boykett
Gabriel Ciobanu
Robert Glück
Robin Kaarsgaard
Maciej Koutny
Ivan Lanese
Claudio Antares Mezzina
 Lukasz Mikulski
Torben Ægidius Mogensen
Mohammad Reza Mousavi
Rajagopal Nagarajan
Luca Paolini
Iain Phillips
Marcin Piatkowski
Kyriaki Psara
Irek Ulidowski
German Vidal
Thomas Worsch

2

Contents

1 Introduction 4

2 Foundations in General 4

3 Finite-State Computing Models 4

4 Reversible Cellular Automata 4

5 Algebra of Reversible Circuits 5

6 Theory of Programming Languages 7

7 Model-based Testing 11

8 Term Rewriting 12

9 Categorical models and semantics 13

10 Petri Nets 16

11 Process Calculi 19

12 Membrane Computing 23

13 Formal Verification of Quantum Systems 26

3

1 Introduction

This report covers research carried out with the aid of COST Action IC1405 on
Reversible Computation and in particular research relating to the topics covered
by Working Group WG1 Foundations. We have mostly followed the structure of
the State of the Art report for WG1, but we have added the topics of ‘Algebra
of Reversible Circuits’, ‘Theory of Programming Languages’ and ‘Membrane
Computing.’ Note that work on Programming Languages is also to be found in
the Year-End Report of WG2 Software and Systems.

Iain Phillips and Michael Kirkedal Thomsen

2 Foundations in General

[GY18] Robert Glück and Tetsuo Yokoyama. Special issue on re-
versible computing: foundations and software. New Generation Com-
puting, 36(3):143–306, 2018

Reversible computing is an emerging field of computer science that has received
increasing attention during the past years. The articles in this special issue
reflect the broad spectrum of research on reversible computing, including topics
such as programming languages and semantics, methods and algorithms, com-
putation models and theoretical foundations. Reversible computing has derived
from fundamental questions on inverting programs and computations. Inverse
problems arise frequently in mathematics, science and engineering, but the cor-
responding problems in computer science are yet to be fully understood. This
special issue aims at contributing to this long-term endeavor by providing a
forum in which answers to important questions are presented in detail.

Robert Glück

3 Finite-State Computing Models

There are no publications to report.

4 Reversible Cellular Automata

[MU16] Daniel Morrison and Irek Ulidowski. Direction-reversible
self-timed cellular automata for delay-insensitive circuits. J. Cellular
Automata, 12(1-2):101–120, 2016

We introduce in this paper a new Self-Timed Cellular Automaton capable of sim-
ulating reversible delay-insensitive circuits. In addition to a number of reversibil-
ity and determinism properties, our STCA exhibits direction-reversibility, where
reversing the direction of a signal and running a circuit forwards is equivalent

4

to running the circuit in reverse. We define also several extensions of the STCA
which allow us to realise three larger classes of delay-insensitive circuits, includ-
ing parallel circuits. We then show which of the reversibility, determinism and
direction-reversibility properties hold for these classes of circuits.

Irek Ulidowski

[KSW18a] Jarkko Kari, Ville Salo, and Thomas Worsch. Sequential-
izing cellular automata. In Cellular Automata and Discrete Complex
Systems - 24th IFIP WG 1.5 International Workshop, AUTOMATA
2018, Ghent, Belgium, June 20-22, 2018, Proceedings, volume 10875
of Lecture Notes in Computer Science, pages 72–87. Springer, 2018

We study the problem of sequentializing a cellular automaton without introduc-
ing any intermediate states, and only performing reversible permutations on the
tape. We give a decidable characterization of cellular automata which can be
written as a single left-to-right sweep of a bijective rule from left to right over
an infinite tape.

The authors gratefully acknowledge partial support for this work by two
short term scientific missions of the EU COST Action IC1405.

Thomas Worsch

[Kar18] Jarkko Kari. Reversible cellular automata: From funda-
mental classical results to recent developments. New Generation
Comput., 36(3):145–172, 2018

A cellular automaton is a dynamical system on an infinite array of cells defined
by a local update rule that is applied simultaneously at all cells. By carefully
choosing the update rule, the global dynamics can be made information pre-
serving. In this case, the cellular automaton is called reversible. In this article,
we explain fundamental classical results concerning reversible cellular automata
and discuss some more recent developments on selected topics. Classical results
reviewed include the Curtis–Hedlund–Lyndon theorem, the Garden-of-Eden the-
orem and the invariance of uniform Bernoulli distribution under reversible cel-
lular automata. We then describe several techniques to construct reversible
cellular automata and a method to determine whether a given one-dimensional
automaton is reversible. We present undecidability issues concerning reversible
cellular automata and discuss three types of universality: computational uni-
versality, intrinsic universality, and physical universality. We finish with short
notes about time symmetry, expansiveness, and conservation laws.

Robert Glück

5 Algebra of Reversible Circuits

[BKS16] Tim Boykett, Jarkko Kari, and Ville Salo. Strongly Uni-
versal Reversible Gate Sets, pages 239–254. Springer International
Publishing, Cham, 2016

5

[BKS17] Tim Boykett, Jarkko Kari, and Ville Salo. Finite gener-
ating sets for reversible gate sets under general conservation laws.
Theoretical Computer Science, 2017. In press

It is well-known that the Toffoli gate and the negation gate together yield a
universal gate set, in the sense that every permutation of {0, 1}n can be im-
plemented as a composition of these gates. Since every bit operation that does
not use all of the bits performs an even permutation, we need to use at least
one auxiliary bit to perform every permutation, and it is known that one bit
is indeed enough. Without auxiliary bits, all even permutations can be imple-
mented. We generalize these results to non-binary logic: If A is a finite set of
odd cardinality then a finite gate set can generate all permutations of An for all
n, without any auxiliary symbols. If the cardinality of A is even then, by the
same argument as above, only even permutations of An can be implemented
for large n, and we show that indeed all even permutations can be obtained
from a finite universal gate set. We also consider the conservative case, that
is, those permutations of An that preserve the weight of the input word. The
weight is the vector that records how many times each symbol occurs in the
word. It turns out that no finite conservative gate set can, for all n, implement
all conservative even permutations of An without auxiliary bits. But we provide
a finite gate set that can implement all those conservative permutations that
are even within each weight class of An.

[BKS17] extends and generalises the conference paper [BKS16]. These pa-
pers answer a conjecture and develop an alternative proof for one result in the
following paper, that is in the refereeing process for a mathematics journal.

[Boy15] Tim Boykett. Closed systems of invertible maps. CoRR,
abs/1512.06813, 2015

We generalise clones, which are sets of functions f : An → A, to sets of maps
f : An → Am. We formalise this and develop language that we can use to speak
about such maps. In particular we look at bijective mappings, which model the
logical gates of reversible computation. Reversible computation is important
for physical (e.g. quantum computation) as well as engineering (e.g. heat dissi-
pation) reasons. We generalise Toffoli’s seminal work on reversible computation
to multiple valued logics. In particular, we show that some restrictions Toffoli
found for reversible computation on alphabets of order 2 do not apply for odd
order alphabets. For A odd, we can create all invertible mappings from the
Toffoli 1- and 2-gates, demonstrating that we can realise all reversible mappings
from four generators. We discuss various forms of closure, corresponding to
various systems of permitted manipulations. This leads, amongst other things,
to discussions about ancilla bits in quantum computation.

Tim Boykett

6

6 Theory of Programming Languages

[Mog16] Torben Ægidius Mogensen. RSSA: a reversible SSA form,
pages 203–217. Springer, 2016

The SSA form (Static Single Assignment form) is used in compilers as an in-
termediate language as an alternative to traditional three-address code because
code in SSA form is easier to analyse and optimize using data-flow analysis such
as common-subexpression elimination, value numbering, register allocation and
so on.

We introduce RSSA, a reversible variant of the SSA form suitable as an
intermediate language for reversible programming languages that are compiled
to reversible machine language. The main issues in making SSA reversible
are the unsuitability for SSA of the reversible updates and exchanges that are
traditional in reversible languages and the need for φ-nodes on both joins and
splits of control-flow. The first issue is handled by making selected uses of a
variable destroy the variable and the latter by adding parameters to labels.

We show how programs in the reversible intermediate language RIL can be
translated into RSSA and discuss copy propagation, constant propagation and
register allocation in the context of RSSA.

Torben Ægidius Mogensen

[GY16] Robert Glück and Tetsuo Yokoyama. A linear-time self-
interpreter of a reversible imperative language. Computer Software,
33(3):108–128, 2016

A linear-time reversible self-interpreter in an r-Turing complete reversible im-
perative language is presented. The proposed imperative language has re-
versible structured control flow operators and symbolic tree-structured data (S-
expressions). The latter data structures are dynamically allocated and enable
reversible simulation of programs of arbitrary size and space consumption. As
self-interpreters are used to show a number of fundamental properties in classic
computability and complexity theory, the present study of an efficient reversible
self-interpreter is intended as a basis for future work on reversible computability
and complexity theory as well as programming language theory for reversible
computing. Although the proposed reversible interpreter consumes superlinear
space, the restriction of the number of variables in the source language leads to
linear-time reversible simulation.

[AG16] Holger Bock Axelsen and Robert Glück. On reversible Tur-
ing machines and their function universality. Acta Informatica,
53(5):509–543, 2016

We provide a treatment of the reversible Turing machines (RTMs) under a strict
function semantics. Unlike many existing reversible computation models, we
distinguish strictly between computing the function λx.f(x) and computing the
function λx.(x, f(x)), or other injective embeddings of f . We reinterpret and

7

adapt a number of important foundational reversible computing results under
this semantics. Unifying the results in a single model shows that, as expected
(and previously claimed), the RTMs are robust and can compute exactly all
injective computable functions. Because injectivity entails that the RTMs are
not strictly Turing-complete w.r.t. functions, we use an appropriate alternative
universality definition, and show how to derive universal RTMs (URTMs) from
existing irreversible universal machines. We then proceed to construct a URTM
from the ground up. This resulting machine is the first URTM which does not
depend on a reversible simulation of an existing universal machine. The new
construction has the advantage that the interpretive overhead of the URTM is
limited to a (program dependent) constant factor. Another novelty is that the
URTM can function as an inverse interpreter at no asymptotic cost.

[AGK16] Holger Bock Axelsen, Robert Glück, and Robin Kaars-
gaard. A classical propositional logic for reasoning about reversible
logic circuits. In Jouko Väänänen, Åsa Hirvonen, and Ruy de Queiroz,
editors, Logic, Language, Information, and Computation. Proceed-
ings, volume 9803 of Lecture Notes in Computer Science, pages 52–
67. Springer-Verlag, 2016

We propose a syntactic representation of reversible logic circuits in their entirety,
based on Feynman’s control interpretation of Toffoli’s reversible gate set. A pair
of interacting proof calculi for reasoning about these circuits is presented, based
on classical propositional logic and monoidal structure, and a natural order-
theoretic structure is developed, demonstrated equivalent to Boolean algebras,
and extended categorically to form a sound and complete semantics for this
system. We show that all strong equivalences of reversible logic circuits are
provable in the system, derive an equivalent equational theory, and describe its
main applications in the verification of both reversible circuits and template-
based reversible circuit rewriting systems.

[GY17] Robert Glück and Tetsuo Yokoyama. A minimalist’s re-
versible while language. IEICE Transactions on Information and
Systems, E100-D, 2017

The paper presents a small reversible language R-CORE, a structured impera-
tive programming language with symbolic tree-structured data (S-expressions).
The language is reduced to the core of a reversible language, with a single com-
mand for reversibly updating the store, a single reversible control-flow operator,
a limited number of variables, and data with a single atom and a single con-
structor. Despite its extreme simplicity, the language is reversibly universal,
which means that it is as powerful as any reversible language can be, while it
is linear-time self-interpretable, and it allows reversible programming with dy-
namic data structures. The four-line program inverter for R-CORE is among
the shortest existing program inverters, which demonstrates the conciseness of
the language. The translator to R-CORE, which is used to show the formal
properties of the language, is clean and modular, and it may serve as a model

8

for related reversible translation problems. The goal is to provide a language
that is sufficiently concise for theoretical investigations. Owing to its simplicity,
the language may also be used for educational purposes.

[HMG17] Tue Haulund, Torben Ægidius Mogensen, and Robert Glück.
Implementing reversible object-oriented language features on reversible
machines. In Reversible Computation - 9th International Confer-
ence, RC 2017, Kolkata, India, July 6-7, 2017, Proceedings, volume
10301 of Lecture Notes in Computer Science, pages 66–73. Springer,
2017

We extended the reversible language Janus with support for class-based object-
oriented programming, class inheritance and subtype-polymorphism. We de-
scribe how to implement these features on reversible hardware - with emphasis
on the implementation of reversible dynamic dispatch using virtual method ta-
bles. Our translation is effective (i.e. garbage-free) and we demonstrate its prac-
ticality by implementation of a fully-featured compiler targeting the reversible
assembly language PISA.

[CGHM18] Martin Holm Cservenka, Robert Glück, Tue Haulund,
and Torben Æ. Mogensen. Data structures and dynamic memory
management in reversible languages. In Jarkko Kari and Irek Ulid-
owski, editors, Reversible Computation. Proceedings, volume 11106
of Lecture Notes in Computer Science, pages 269–285. Springer-
Verlag, 2018

We present a method for reversible dynamic memory management based
on a reversible version of the Buddy Memory system. This method supports
decoupled allocation and deallocation of variable-sized records and can be ap-
plied to any reversible language with heap storage. We demonstrate how these
new capabilities allow for the direct realization of commonplace data struc-
tures such as trees, heaps and queues which until now has not been practical
in a reversible language. Finally, we provide a definition of our method in the
high-level reversible language Janus as well as a description of its fragmentation
and garbage-generation characteristics. The reversible memory management
system has been fully implemented and tested in a compiler for a reversible
object-oriented programming language targeting the reversible assembly lan-
guage PISA.

[Mog18] Torben Ægidius Mogensen. Reversible garbage collection for
reversible functional languages. New Generation Comput., 36(3):203–
232, 2018

Reversible functional languages have been proposed that use patterns symmet-
rically for matching and building data: A pattern used on the left-hand side of
a function rule takes apart a data structure, and a pattern used on the right-
hand side of a rule builds a data structure. When calling a function in reverse,

9

the meaning of patterns are reversed, so patterns on the right-hand side take
apart data and patterns on the left-hand side build data. If using a pattern to
build data creates a node with exactly one reference, a node that is taken apart
must by symmetry also have exactly one reference. This implies linearity: A
node that is built or taken apart has exactly one incoming reference. A recur-
sive function can take apart one data structure while building two or more new
copies, allowing multiple uses of values, but the new copies will also have one
reference each. Linearity makes garbage collection simple: Whenever a node
is taken apart by pattern matching, it is freed. The cost is that multiple uses
of a value require deep copies. The reason for the linearity restriction is the
symmetry between constructing and deconstructing nodes: Since constructing
a node creates exactly one reference to this node, the inverse can only be ap-
plied if the reference count is exactly one. We can overcome this limitation if
constructing a node can return a node with multiple references. We achieve this
through maximal sharing: If a newly constructed node is identical to an already
existing node, we return a pointer to the existing node (increasing its reference
count) instead of allocating a new node with reference count one. This allows
multiple references to nodes while retaining the symmetry of pattern matching
and construction, and it allows values to be used multiple times without making
deep copies. To avoid searching the entire heap for an identical node, we use
hash-consing to restrict the search to a small segment of the heap. We esti-
mate how large this segment needs to be to give a low probability of allocation
failure with acceptable utilisation and support this estimate with experiments.
We sketch how a functional program can be translated to use the memory man-
ager, and we test the memory manager both with artificial test programs and a
hand-compiled functional program.

[GY19] Robert Glück and Tetsuo Yokoyama. Constructing a binary
tree from its traversals by reversible recursion and iteration. Infor-
mation Processing Letters, 147:32–37, 2019

We cast two algorithms to generate the inorder and preorder of the labels of a
binary tree in the context of reversible computing nearly three decades after they
were first examined in the light of program inversion. The reversible traversals
directly define the inverse algorithms that reconstruct the binary tree and have
the same linear time and space requirements as the traversals. A reversible
while-language is extended with reversible recursion.

Robert Glück

[PPR16] Luca Paolini, Mauro Piccolo, and Luca Roversi. A class of
reversible primitive recursive functions. Electr. Notes Theor. Com-
put. Sci., 322:227–242, 2016

Reversible computing is bi-deterministic which means that its execution is
both forward and backward deterministic, i.e. next/previous computational step
is uniquely determined. Various approaches exist to catch its extensional or

10

intensional aspects and properties. We present a class RPRF of reversible func-
tions which holds at bay intensional aspects and emphasizes the extensional
side of the reversible computation by following the style of Dedekind-Robinson
Primitive Recursive Functions. The class RPRF is closed by inversion, can only
express bijections on integers — not only natural numbers —, and it is expres-
sive enough to simulate Primitive Recursive Functions, of course, in an effective
way.

[PZ17] Luca Paolini and Margherita Zorzi. qpcf: A language for
quantum circuit computations. In Theory and Applications of Mod-
els of Computation - 14th Annual Conference, TAMC 2017, Bern,
Switzerland, April 20-22, 2017, Proceedings, volume 10185 of Lecture
Notes in Computer Science, pages 455–469, 2017

We propose qPCF, a functional language able to define and manipulate
quantum circuits in an easy and intuitive way. qPCF follows the tradition of
“quantum data & classical control” languages, inspired to the QRAM model.
Ideally, qPCF computes finite circuit descriptions which are offloaded to a quan-
tum co-processor (i.e. a quantum device) for the execution. qPCF extends PCF
with a new kind of datatype: quantum circuits. The typing of qPCF is quite
different from the mainstream of “quantum data & classical control” languages
that involves linear/exponential modalities. qPCF uses a simple form of de-
pendent types to manage circuits and an implicit form of monad to manage
quantum states via a destructive-measurement operator.

[PPR18] Luca Paolini, Mauro Piccolo, and Luca Roversi. A certified
study of a reversible programming language. In 21st International
Conference on Types for Proofs and Programs, TYPES 2015, May
18-21, 2015, Tallinn, Estonia, volume 69 of LIPIcs, pages 7:1–7:21.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018

We advance in the study of the semantics of Janus, a C-like reversible pro-
gramming language. Our study makes utterly explicit some backward and for-
ward evaluation symmetries. We want to deepen mathematical knowledge about
the foundations and design principles of reversible computing and programming
languages. We formalize a big-step operational semantics and a denotational
semantics of Janus. We show a full abstraction result between the operational
and denotational semantics. Last, we certify our results by means of the proof
assistant Matita.

Luca Paolini

7 Model-based Testing

[HMTT17] Robert M. Hierons, Mohammad Reza Mousavi, Michael Kirkedal
Thomsen, and Uraz Cengiz Türker. Hardness of deriving invertible

11

sequences from finite state machines. In SOFSEM 2017: Theory
and Practice of Computer Science - 43rd International Conference
on Current Trends in Theory and Practice of Computer Science,
Limerick, Ireland, January 16-20, 2017, Proceedings, volume 10139
of Lecture Notes in Computer Science, pages 147–160. Springer, 2017

We have performed research on test-case generation for finite state machines.
Our focus has been on making the test-case generation and more efficient by
using reversible subset of transitions in a finite state machine. In particular,
we have focused on developing efficient algorithms for state verification using
unique input-output sequences.

Mohammad Reza Mousavi

8 Term Rewriting

[NPV18] Naoki Nishida, Adrián Palacios, and Germán Vidal. Re-
versible computation in term rewriting. J. Log. Algebr. Meth. Pro-
gram., 94:128–149, 2018

Essentially, in a reversible programming language, for each forward computation
from state S to state S′, there exists a constructive method to go backwards
from state S′ to state S. Besides its theoretical interest, reversible computation
is a fundamental concept which is relevant in many different areas like cellular
automata, bidirectional program transformation, or quantum computing, to
name a few. In this work, we focus on term rewriting, a computation model that
underlies most rule-based programming languages. In general, term rewriting
is not reversible, even for injective functions; namely, given a rewrite step t1 →
t2, we do not always have a decidable method to get t1 from t2. Here, we
introduce a conservative extension of term rewriting that becomes reversible.
Furthermore, we also define two transformations, injectivization and inversion,
to make a rewrite system reversible using standard term rewriting. We illustrate
the usefulness of our transformations in the context of bidirectional program
transformation.

[NV19] Naoki Nishida and Germán Vidal. Characterizing compati-
ble view updates in syntactic bidirectionalization. In Mathias Soeken
and Michael Kirkedal Thomsen, editors, Reversible Computation
- 11th International Conference, RC 2019, Lausanne, Switzerland,
June 24-25, 2019, Proceedings, Lecture Notes in Computer Science.
Springer, 2019

Given a function that takes a source data and returns a view, bidirectionalization
aims at producing automatically a new function that takes a modified view and
returns the corresponding, modified source. In this paper, we consider simple
first-order functional programs specified by (conditional) term rewrite systems.

12

Then, we present a bidirectionalization technique based on the injectivization
and inversion transformations from [NPV18]. We also prove a number of rele-
vant properties which ensure that changes in both the source and the view are
correctly propagated and that no undesirable side-effects are introduced. Fur-
thermore, we introduce the use of narrowing—an extension of rewriting that
re-places matching with unification—to precisely characterize compatible (also
called in-place) view updates so that the resulting bidirectional transformations
are well defined. Finally, we discuss some directions for dealing with view up-
dates that are not compatible.

Germán Vidal

9 Categorical models and semantics

[KAG17] Robin Kaarsgaard, Holger Bock Axelsen, and Robert Glück.
Join inverse categories and reversible recursion. Journal of Logical
and Algebraic Methods in Programming, 87:33–50, 2017

Recently, a number of reversible functional programming languages have been
proposed. Common to several of these is the assumption of totality, a prop-
erty that is not necessarily desirable, and certainly not required in order to
guarantee reversibility. In a categorical setting, however, faithfully capturing
partiality requires handling it as additional structure. Recently, Giles studied
inverse categories as a model of partial reversible (functional) programming. In
this paper, we show how additionally assuming the existence of countable joins
on such inverse categories leads to a number of properties that are desirable
when modeling reversible functional programming, notably morphism schemes
for reversible recursion, a †-trace, and algebraic ω-compactness. This gives a
categorical account of reversible recursion, and, for the latter, provides an an-
swer to the problem posed by Giles regarding the formulation of recursive data
types at the inverse category level.

Robin Kaarsgaard

[GPY17] E. Graversen, I.C.C. Phillips, and N. Yoshida. Towards
a categorical representation of reversible event structures. In Pro-
ceedings of the International Workshop on Programming Language
Approaches to Concurrency- and Communication-cEntric Software
(PLACES 16), volume 246 of EPTCS, pages 49–60, 2017

We study categories for reversible computing, focussing on reversible forms of
event structures. Event structures are a well-established model of true concur-
rency. There exist a number of forms of event structures, including prime event
structures, asymmetric event structures, and general event structures. More
recently, reversible forms of these types of event structures have been defined.
We formulate corresponding categories and functors between them. We show
that products and co-products exist in many cases. In most work on reversible

13

computing, including reversible process calculi, a cause-respecting condition is
posited, meaning that the cause of an event may not be reversed before the event
itself. Since reversible event structures are not assumed to be cause-respecting in
general, we also define cause-respecting subcategories of these event structures.
Our longer-term aim is to formulate event structure semantics for reversible
process calculi.

Iain Phillips

[GK18a] Robert Glück and Robin Kaarsgaard. A categorical foun-
dation for structured reversible flowchart languages. Electr. Notes
Theor. Comput. Sci., 336:155–171, 2018

Structured reversible flowchart languages is a class of imperative reversible
programming languages allowing for a simple diagrammatic representation of
control flow built from a limited set of control flow structures, as ordinary
structured flowcharts allow for conventional languages. This class includes the
reversible programming language Janus (without recursion), as well as more
recently developed reversible programming languages such as R-CORE and R-
WHILE.

In the present paper, we develop a categorical foundation for this class of
languages based on inverse categories with joins. We generalize the notion of ex-
tensivity of restriction categories to one that may be accommodated by inverse
categories, and use the resulting decision maps to give a reversible represen-
tation of predicates and assertions. This leads to a categorical semantics for
structured reversible flowcharts, from which we show that a program inverter
can be extracted. Finally, we exemplify our approach by the development of
a small structured reversible flowchart language, use our framework to both
straightforwardly give it semantics and derive fundamental theorems about it,
and discuss further applications of decisions in reversible programming.

Robin Kaarsgaard

[GK18b] Robert Glück and Robin Kaarsgaard. A categorical foun-
dation for structured reversible flowchart languages: Soundness and
adequacy. Logical Methods in Computer Science, 14(3), 2018

Structured reversible flowchart languages is a class of imperative reversible pro-
gramming languages allowing for a simple diagrammatic representation of con-
trol flow built from a limited set of control flow structures. This class includes
the reversible programming language Janus (without recursion), as well as more
recently developed reversible programming languages such as R-CORE and R-
WHILE. In the present paper, we develop a categorical foundation for this class
of languages based on inverse categories with joins. We generalize the notion of
extensivity of restriction categories to one that may be accommodated by inverse
categories, and use the resulting decisions to give a reversible representation of
predicates and assertions. This leads to a categorical semantics for structured

14

reversible flowcharts, which we show to be computationally sound and adequate,
as well as equationally fully abstract with respect to the operational semantics
under certain conditions.

Robert Glück

[Kaa19] Robin Kaarsgaard. Inversion, iteration, and the art of dual
wielding. In Mathias Soeken and Michael Kirkedal Thomsen, edi-
tors, Reversible Computation - 11th International Conference, RC
2019, Lausanne, Switzerland, June 24-25, 2019, Proceedings, Lec-
ture Notes in Computer Science. Springer, 2019

The humble † (“dagger”) is used to denote two different operations in category
theory: Taking the adjoint of a morphism (in dagger categories) and finding
the least fixed point of a functional (in categories enriched in domains). While
these two operations are usually considered separately from one another, the
emergence of reversible notions of computation shows the need to consider how
the two ought to interact. In the present paper, we wield both of these daggers
at once and consider dagger categories enriched in domains. We develop a notion
of a monotone dagger structure as a dagger structure that is well behaved with
respect to the enrichment, and show that such a structure leads to pleasant
inversion properties of the fixed points that arise as a result. Notably, such a
structure guarantees the existence of fixed point adjoints, which we show are
intimately related to the conjugates arising from a canonical involutive monoidal
structure in the enrichment. Finally, we relate the results to applications in the
design and semantics of reversible programming languages.

Robin Kaarsgaard

[GPY19] E. Graversen, I.C.C. Phillips, and N. Yoshida. Towards a
categorical representation of reversible event structures. Journal of
Logical and Algebraic Methods in Programming, 104:16–59, 2019

We study categories for reversible computing, focussing on reversible forms of
event structures. Event structures are a well-established model of true concur-
rency. There exist a number of forms of event structures, including prime event
structures, asymmetric event structures, and general event structures. More
recently, reversible forms of these types of event structure have been defined.
We formulate corresponding categories and functors between them. We show
that products and coproducts exist in many cases.

We define stable reversible general event structures and stable configuration
systems, and we obtain an isomorphism between the subcategory of the former
in normal form and the finitely enabled subcategory of the latter.

In most work on reversible computing, including reversible process calculi,
a causality condition is posited, meaning that the cause of an event may not
be reversed before the event itself. Since reversible event structures are not
assumed to be causal in general, we also define causal subcategories of these
event structures.

Iain Phillips

15

10 Petri Nets

[BMP+16] Kamila Barylska, Lukasz Mikulski, Marcin Piatkowski,
Maciej Koutny, and Evgeny Erofeev. Reversing transitions in bounded
Petri nets. In Proceedings of the 25th International Workshop on
Concurrency, Specification and Programming, Rostock, Germany,
September 28-30, 2016, volume 1698 of CEUR Workshop Proceed-
ings, pages 74–85. CEUR-WS.org, 2016

[BKMP16] Kamila Barylska, Maciej Koutny, Lukasz Mikulski, and
Marcin Piatkowski. Reversible computation vs. reversibility in Petri
nets. In Reversible Computation - 8th International Conference, RC
2016, Bologna, Italy, July 7-8, 2016, Proceedings, volume 9720 of
Lecture Notes in Computer Science, pages 105–118. Springer, 2016

Papers [BMP+16] and [BKMP16] contain preliminary results on the possi-
bility of reversing the effect of the execution of Petri net transitions without
retaining the previous stable states of the system or preserving the exact exe-
cution order of the transitions (but maintaining their partial order).

In [BMP+16], the undecidability of the problem of maintaining the set of
reachable states of a p/t-net unchanged (related to the reachability problem)
has been proven. Not only this cannot always be done, but no universal method
can be proposed for checking if it is feasible. At the same time, it is possible to
verify the invariability of executable computations (such a problem is related to
the coverability problem in p/t-nets).

In [BKMP16], the case of bounded p/t-nets has been considered. It was
shown that the problem of maintaining the set of reachable states unchanged is
not only decidable, but - with the use of finite sets of inverse transitions - for each
instance of this problem the answer is positive. The proof is constructive, and
the proposed procedure based on the original p/t-net increases (at most twice)
the number of places. Potentially, the number of the constructed reverses might
be large when using the proposed naive algorithm (in fact, it can be as big as
the number of occurrences of a reversed transition in the reachability graph of
the original p/t-net). However, the procedure can be optimised, and one can
always compute a minimal set of reverses.

The above results have been obtained thanks to two successful Short Term
Scientific Missions of the COST action.

Kamila Barylska, Maciej Koutny, Lukasz Mikulski, Marcin Piatkowski

[PP17] Anna Philippou and Kyriaki Psara. Reversible computation
in Petri nets. Technical report, University of Cyprus, 2017

We have conducted a research that studies reversible computation in the context
of Petri Nets and in particular explores the modeling of the three main strategies
for reversing computation. Our aim has been to address the challenges of cap-
turing the notions of backtracking, causal reversibility and out-of-causal-order

16

reversibility within the Petri Net framework, thus proposing a novel, graphical
methodology for studying reversible models where actions can be executed in
either direction. Our approach is based on the introduction of memories for
transitions as well as a special treatment of tokens, that requires them to be
persistent and to retain individuality in order to allow the reversal of transi-
tions in or out-of-causal order. The expressive power and visual nature offered
by Petri Nets coupled with reversible computation has the potential of pro-
viding an attractive setting for analyzing systems. Indeed, good models that
can be easily understood and simulated, even by scientists with expertise out-
side Computer Science, can prove very useful to understand complex systems.
Furthermore, the applicability of our framework has been illustrated with an
example of a biochemical system and an example of a transaction-processing
system that naturally embed reversible behavior.

Kyriaki Psara

[dFEKM18] David de Frutos Escrig, Maciej Koutny, and Lukasz
Mikulski. An efficient characterization of petri net solvable binary
words. In Applications and Theory of Petri Nets and Concurrency,
volume 10877 of Lecture Notes in Computer Science. Springer, 2018

The work by David de Frutos Escrig, Maciej Koutny and Lukasz Mikulski im-
proved the characterization of binary Petri net solvable words and defined on
their base reversible binary words.

We present a simple characterization of the set of Petri Net solvable binary
words, that states that these are exactly the extensions of the prefixes of Petri
Net cyclic solvable words, by some prefix xk, where x can be any letter of
considered binary alphabet, and k is any natural number. As a byproduct of
the characterization, we also present a linear time algorithm to decide whether
a word is solvable. The key idea is that the connection with the set of cyclic
solvable words induces a regularity character, so that we just need to look for
possible irregularities, and this can be done in a structural way, at the end
producing the surprising linearity of the obtained decision algorithm. Finally,
we utilize the discussed results in order to characterize (Petri net) reversible
binary transition systems.

 Lukasz Mikulski

[PP18] Anna Philippou and Kyriaki Psara. Reversible computa-
tion in Petri nets. In Reversible Computation - 10th International
Conference, RC 2018, Leicester, UK, September 12-14, 2018, Pro-
ceedings, volume 11106 of Lecture Notes in Computer Science, pages
84–101. Springer, 2018

Reversible computation is an unconventional form of computing where any
executed sequence of operations can be executed in reverse at any point during
computation. In this paper we propose a reversible approach to Petri nets

17

by introducing machinery and associ- ated operational semantics to tackle the
challenges of the three main forms of reversibility, namely, backtracking, causal
reversing and out-of- causal-order reversing. Our proposal concerns a variation
of Petri nets where tokens are persistent and are distinguished from each other
by an identity. Our design decisions are influenced by applications in biochem-
istry but the methodology can be applied to a wide range of problems that
feature reversibility. We demonstrate the applicability of our ap- proach with
an example of a biochemical system and an example of a transaction-processing
system both featuring reversible behaviour.

Kyriaki Psara

[BGM+18] Kamila Barylska, Anna Gogolinska, Lukasz Mikulski,
Anna Philippou, Marcin Piatkowski, and Kyriaki Psara. Revers-
ing computations modelled by coloured petri nets. In Proceedings
of the International Workshop on Algorithms & Theories for the
Analysis of Event Data 2018 Satellite event of the conferences: 39th
International Conference on Application and Theory of Petri Nets
and Concurrency Petri Nets 2018 and 18th International Confer-
ence on Application of Concurrency to System Design ACSD 2018,
Bratislava, Slovakia, June 25, 2018., volume 2115 of CEUR Work-
shop Proceedings, pages 91–111. CEUR-WS.org, 2018

This work is a continuation of the research line initiated in [PP18].
In the paper [BGM+18] a structural way of translating reversing Petri nets

(RPNs), a formalism that embeds the three main forms of reversibility (back-
tracking, causal reversing and out-of-causal-order reversing), to Coloured Petri
Nets (CPNs), an extension of traditional Petri Nets, where tokens carry data
values, was proposed. The translation into the CPN model uses additional
places and transitions in order to capture the machinery employed in the RPN
framework and demonstrates that the abstract model of RPNs, and thus the
principles of reversible computation, can be emulated in CPNs. The transfor-
mation is presented on several exmaples in CPN Tools software, but can be
automated and utilized for the analysis of reversible systems using software.

The above results have been obtained thanks to two successful Short Term
Scientific Missions of the COST Action.

[dFEKM19] David de Frutos Escrig, Maciej Koutny, and Lukasz
Mikulski. Reversing steps in Petri nets. In Petri Nets 2019, Pro-
ceedings, 2019. To appear

The work by David de Frutos Escrig, Maciej Koutny and Lukasz Mikulski enti-
tled Reversing Steps in Petri Nets discuss the problem of reversing the effect of
the execution of groups of actions (steps).

Using Petri nets as a system model, concepts related to this new scenario,
generalising notions used in the single action case is introduced. A number of
properties which arise in the context of reversing of steps of executed transitions

18

in place/transition nets is then presented. Both positive and negative results,
showing that dealing with steps makes reversibility more involved than in the
sequential case, are obtained. In particular, the crucial difference between re-
versing steps which are sets and those which are true multisets is discussed in
details.

The above results have been obtained thanks to three successful Short Term
Scientific Missions of the COST Action.

 Lukasz Mikulski

[ML19] Lukasz Mikulski and Ivan Lanese. Reversing unbounded
Petri nets. In Petri Nets 2019, Proceedings, 2019. To appear

In Petri nets, computation is performed by executing transitions. An effect-
reverse of a given transition b is a transition that, when executed, undoes the
effect of b. A transition b is reversible if it is possible to add enough effect-
reverses of b so to always being able to undo its effect, without changing the set
of reachable markings.

This paper studies the transition reversibility problem: in a given Petri net,
is a given transition b reversible? We show that, contrarily to what happens
for the subclass of bounded Petri nets, the transition reversibility problem is
in general undecidable. We show, however, that the same problem is decidable
in relevant subclasses beyond bounded Petri nets, notably including all Petri
nets which are cyclic, that is where the initial marking is reachable from any
reachable marking. We finally show that some non-reversible Petri nets can be
restructured, in particular by adding new places, so to make them reversible,
while preserving their behaviour.

Ivan Lanese

11 Process Calculi

[GLMT17] Elena Giachino, Ivan Lanese, Claudio Antares Mezzina,
and Francesco Tiezzi. Causal-consistent rollback in a tuple-based
language. J. Log. Algebr. Meth. Program., 88:99–120, 2017

[GLMT15] Elena Giachino, Ivan Lanese, Claudio Antares Mezzina,
and Francesco Tiezzi. Causal-consistent reversibility in a tuple-based
language. In PDP, pages 467–475. IEEE Computer Society, 2015

We have studied the definition of a rollback operator in the coordination lan-
guage muKlaim [GLMT17], continuing the work undertaken in [GLMT15]. The
main new result is that such an operator satisfies a simple intuitive specification,
namely that it is the smallest causal-consistent set of backward moves undoing
the target action.

Ivan Lanese

19

[BDLd15] Franco Barbanera, Mariangiola Dezani-Ciancaglini, Ivan
Lanese, and Ugo de’Liguoro. Retractable contracts. In PLACES,
volume 203 of EPTCS, pages 61–72, 2015

[BLd17] Franco Barbanera, Ivan Lanese, and Ugo de’Liguoro. Re-
tractable and speculative contracts. In COORDINATION, LNCS.
Springer, 2017. to appear

[BdL16] Franco Barbanera and Ugo de’ Liguoro. A game interpre-
tation of retractable contracts. In Alberto Lluch-Lafuente and José
Proença, editors, COORDINATION, volume 9686 of Lecture Notes
in Computer Science, pages 18–34. Springer, 2016

[BDLd15] Franco Barbanera, Mariangiola Dezani-Ciancaglini, Ivan
Lanese, and Ugo de’Liguoro. Retractable contracts. In PLACES,
volume 203 of EPTCS, pages 61–72, 2015

We have continued the study of retractable contracts started in [BDLd15]. Main
results [BLd17] are that both compliance and the subcontract relation are de-
cidable in polynomial time, and that the dual of a contract always exists and
has a simple syntactic characterization. Furthermore, the same results apply to
a novel model of contracts featuring a speculative choice: all the options of the
choice are explored concurrently, and the computation succeeds if at least one
of the options is successful. In [BdL16], instead, we have proposed a three-
party game-theoretic interpretation of retractable session contracts, namely
the retractable contracts of [BDLd15]. In such an interpretation a client is
retractable-compliant with a server if and only if there exists a winning strategy
for a particular player in a game-theoretic model of contracts. Such a player
can be looked at as a mediator, driving the choices in the retractable points.

Ivan Lanese

[MM16] Doriana Medic and Claudio Antares Mezzina. Static VS
dynamic reversibility in CCS. In Simon J. Devitt and Ivan Lanese,
editors, Reversible Computation - 8th International Conference, RC
2016, volume 9720 of Lecture Notes in Computer Science, pages 36–
51. Springer, 2016

In the literature there exist two reversible variants of CCS. Reversible CCS
(RCCS), proposed by Danos and Krivine, enacts reversibility by means of mem-
ory stacks. Ulidowski and Phillips proposed a general method to reverse a pro-
cess calculus given in a particular SOS format, by exploiting the idea of making
all the operators of a calculus static. CCSK is then derived from CCS with this
method. Hence a natural question arises. Are these two reversible CCSs simi-
lar? In [MM16] a positive answer is given to this question, where an encoding
from CCSK to RCCS and its opposite are presented.

20

[MK17] Claudio Antares Mezzina and Vasileios Koutavas. A safety
and liveness theory for total reversibility. In Frédéric Mallet, Min
Zhang, and Eric Madelaine, editors, 11th International Symposium
on Theoretical Aspects of Software Engineering, TASE 2017, Sophia
Antipolis, France, September 13-15, 2017, pages 1–8. IEEE, 2017

We study the theory of safety and liveness in a reversible calculus where re-
ductions are totally ordered and rollbacks lead systems to past states. Liveness
and safety in this setting naturally correspond to the should-testing and inverse
may-testing preorders, respectively. In reversible languages, however, the nat-
ural models of these preorders would need to be based on both forward and
backward transitions, thus offering complex proof techniques for verification.
Here we develop novel fully abstract models of liveness and safety which are
based on forward transitions and limited rollback points, giving rise to consid-
erably simpler proof techniques. Moreover, we show that, with respect to safety,
total reversibility is a conservative extension to CCS. With respect to liveness,
we prove that adding total reversibility to CCS distinguishes more systems.
To our knowledge, this work provides the first testing theory for a reversible
calculus, and paves the way for a testing theory for causal reversibility.

We have identified two sufficient properties for our safety and liveness the-
ories to apply to any reversible language. In fact, the first property holds in
languages with controlled, causal reversibility and therefore our safety theory
immediately applies to them. The problem of determining whether the second
property applies to remains open. We view the identification of this property
as a first important step towards the development of a liveness theory for con-
trolled, causal reversibility.

Claudio Antares Mezzina

[KU18] Stefan Kuhn and Irek Ulidowski. Local reversibility in a
calculus of covalent bonding. Sci. Comput. Program., 151:18–47,
2018

The paper introduces a process calculus with a new prefixing operator that
allows us to model locally controlled reversibility. Actions can be undone spon-
taneously, as in other reversible process calculi, or as pairs of concerted actions,
where performing a weak action forces undoing of another action. The new op-
erator in its full generality allows us to model out-of-causal order computation,
where effects are undone before their causes are undone, which goes beyond
what typical reversible calculi can express. However, the core calculus, which
uses only the reduced form of the new operator, is well behaved as it satisfied
causal consistency. We demonstrate the usefulness of the calculus by modelling
the hydration of formaldehyde in water into methanediol, an industrially im-
portant reaction, where the creation and breaking of some bonds are examples
of locally controlled out-of-causal order computation.

Irek Ulidowski

21

[MMPY18] Doriana Medic, Claudio Antares Mezzina, Iain Phillips,
and Nobuko Yoshida. A parametric framework for reversible pi-
calculi. In Proceedings Combined 25th International Workshop on
Expressiveness in Concurrency and 15th Workshop on Structural
Operational Semantics and 15th Workshop on Structural Operational
Semantics, EXPRESS/SOS, volume 276 of EPTCS, pages 87–103,
2018

[Mez18] Claudio Antares Mezzina. On reversibility and broadcast. In
Reversible Computation - 10th International Conference, RC 2018,
volume 11106 of Lecture Notes in Computer Science, pages 67–83.
Springer, 2018

Causally consistent reversibility relates reversibility in a concurrent system with
causality. In CCS there exist just one notion of causality, which is induced by
the syntax of the terms. When moving to more expressive calculi, such as π-
calculus thins are more complex. In π-calculus there exists different notions of
causality, which differ in the treatment of parallel extrusions of the same name.
In [MMPY18] a uniform framework for reversible π-calculi is presented. The
framework is parametric with respect to a data structure that stores informa-
tion about an extrusion of a name. Different data structures yield different
approaches to the parallel extrusion problem. We map three well-known causal
semantics into our framework. We show that the (parametric) reversibility in-
duced by our framework is causally consistent and prove a causal correspondence
between an appropriate instance of the framework and Boreale and Sangiorgi’s
causal semantics. Broadcast is a powerful primitive of communication used to
model several distributed systems from local area networks, including wireless
systems and lately multi-agent systems. In [Mez18] we study the interplay be-
tween reversibility and broadcast, in the setting of CCS endowed with a broad-
cast semantics. We first show how it is possible to reverse broadcast in CCS and
then show that the obtained reversibility is causally consistent. We show the
applicability of the proposed calculus by modelling the consensus algorithm.

Claudio Antares Mezzina

[Lan18] Ivan Lanese. From reversible semantics to reversible de-
bugging. In Reversible Computation - 10th International Confer-
ence, RC 2018, Leicester, UK, September 12-14, 2018, Proceedings,
volume 11106 of Lecture Notes in Computer Science, pages 34–46.
Springer, 2018

This paper presents a line of research in reversible computing for concurrent
systems. This line of research started in 2004 with the definition of the first re-
versible extensions for concurrent process calculi such as CCS, and is currently
heading to the production of practical reversible debuggers for concurrent lan-
guages such as Erlang. Main questions that had to be answered during the
research include the following. Which is the correct notion of reversibility for

22

concurrent systems? Which history information needs to be stored? How to
control the basic reversibility mechanism? How to exploit reversibility for de-
bugging? How to apply reversible debugging to real languages?

Ivan Lanese

[UPY18] Irek Ulidowski, Iain Phillips, and Shoji Yuen. Reversing
event structures. New Generation Computing, 36(3):281–306, Jul
2018

Reversible computation has attracted increasing interest in recent years. In this
paper, we show how to model reversibility in concurrent computation as realised
abstractly in terms of event structures. Two different forms of event structures
are considered, namely event structures defined by causation and prevention
relations and event structures given by an enabling relation with prevention.
We then show how to reverse the two kinds of event structures, and discuss
causal as well as out-of-causal order reversibility.

Irek Ulidowski

[GPY18] E. Graversen, I.C.C. Phillips, and N. Yoshida. Event struc-
ture semantics of (controlled) reversible CCS. In Proceedings of
Tenth International Conference on Reversible Computation (RC 2018),
volume 11106 of Lecture Notes in Computer Science, pages 102–122,
2018

CCSK is a reversible form of CCS which is causal, meaning that actions can be
reversed if and only if each action caused by them has already been reversed;
there is no control on whether or when a computation reverses. We propose
an event structure semantics for CCSK. For this purpose we define a category
of reversible bundle event structures, and use the causal subcategory to model
CCSK. We then modify CCSK to control the reversibility with a rollback prim-
itive, which reverses a specific action and all actions caused by it. To define
the event structure semantics of rollback, we change our reversible bundle event
structures by making the conflict relation asymmetric rather than symmetric,
and we exploit their capacity for non-causal reversibility.

Iain Phillips

12 Membrane Computing

[AC17] Bogdan Aman and Gabriel Ciobanu. Reversibility in parallel
rewriting systems. J. UCS, 23(7):692–703, 2017

[AC18b] Bogdan Aman and Gabriel Ciobanu. Controlled reversibil-
ity in reaction systems. In Membrane Computing - 18th Interna-
tional Conference, CMC 2017, Bradford, UK, July 25-28, 2017, Re-
vised Selected Papers, volume 10725 of Lecture Notes in Computer
Science, pages 40–53. Springer, 2018

23

Natural computing is a complex field of research dealing with models and com-
putational techniques inspired by nature that helps us in understanding the
biochemical world in terms of information processing. The articles [AC17]
and [AC18b] investigate the reversibility of biochemical reactions in two im-
portant theories of natural computing inspired by the functioning of living cells,
namely in membrane computing and in reaction systems. Membrane computing
deals with multisets of symbols processed in the compartments of a membrane
structure according to some multiset rewriting rules; some of the symbols (pre-
sented with their multiplicity within the regions delimited by membranes) evolve
in parallel according to the rules associated with their membranes, while the oth-
ers remain unchanged and can be used in the subsequent steps. The situation is
different in reaction systems; these systems represent a qualitative model, and
so they deal with sets rather than multisets. Two major assumptions distinguish
the reaction systems from the membrane systems:

(i) threshold assumption claiming that if a resource is present in the system,
then it is present in a ”sufficient amount” such that several reactions need-
ing such a resource are not in conflict (this means that reaction systems have
actually an infinite multiplicity for their resources);

(ii) no permanency assumption claiming that an entity disappears from the
current state unless it is produced by one of the reactions enabled in that state.

The important innovations of these articles are given by adding the reverse
rules to the initial set of rules, as well as by adding an external control specified
by using a special symbol informing the system that a rollback is needed. Their
contribution is done by several theoretical results relating the evolutions of these
systems to their reversible extensions.

[AC18a] Bogdan Aman and Gabriel Ciobanu. Bonding calculus.
Natural Computing, 17(4):823–832, 2018

Process calculi, originally designed for modelling concurrent computations, have
been widely applied to model biochemical and biological systems. Each term
in the description of a biosystem has a counterpart in the biophysical system,
and the behaviour of the whole system is obtained by following the operational
semantics of the process calculi. Aman and Ciobanu introduced in [5] a process
calculus able to describe and manipulate the bonding compounds by using only
bond and unbond actions. The simulations by using the software platform
Uppaal [6] can describe the dynamics of these bonding systems, and so it is
possible to test the validity of some underlying assumptions and to verify various
properties of the dynamics of the systems expressed in bonding calculus. This
bonding calculus is also suitable to capture the out-of-order locally controlled
reversibility defined in [9].

In [3], Aman and Ciobanu investigated the reversibility of biochemical reac-
tions in membrane computing. Membrane computing [10] deals with multisets
of symbols processed in the compartments of a membrane structure according
to some multiset rewriting rules. The new features are given by adding the
reverse rules to the initial set of rules, as well as by adding an external con-
trol specified by using a special symbol informing the system that a rollback is

24

needed. Several theoretical results are proved, including so-called loop results
and the connections between the evolutions of these systems and their reversible
extensions.

In [4], Aman and Ciobanu investigated the reversibility in reaction systems.
Reaction systems [8] represent a qualitative model; they deal with sets rather
than multisets, assuming that a certain resource is present in the system in a
sufficient amount such that several reactions needing such a resource are not in
conflict. There are proved some results, including an operational correspondence
between reaction systems and rewriting theory which allows a translation of
the reversible reaction systems into some rewriting systems executable in the
rewriting engine Maude [7].

In [1], Agrogoroaiei and Ciobanu present reversibility in membrane systems
as a form of duality (under the influence of category theory). A full description
of this kind of reversibility in membrane systems is given in [2].

References

[1] O. Agrigoroaiei, G. Ciobanu. Dual P Systems. Lecture Notes in Computer
Science 5391, 95–107 (2009).

[2] O. Agrigoroaiei, G. Ciobanu. Reversing Computation in Membrane Systems.
Journal of Logic and Algebraic Programming 79, 278-288 (2010).

[3] B. Aman, G. Ciobanu. Reversibility in Parallel Rewriting Systems. Journal
of Universal Computer Science 23(7), 692-703 (2017).

[4] B. Aman, G. Ciobanu. Controlled Reversibility in Reaction Systems. Lecture
Notes in Computer Science 10725, 40-53 (2018).

[5] B. Aman, G. Ciobanu. Bonding Calculus. Natural Computing 17(4), 823-832
(2018).

[6] G. Behrmann, A. David, K.G. Larsen. A Tutorial on Uppaal . Lecture Notes
in Computer Science 3185, 200-236 (2004).

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, C.L.
Talcott. All About Maude - A High Performance Logical Framework. How
to Specify, Program and Verify Systems in Rewriting Logic. Springer (2007).

[8] A. Ehrenfeucht, G. Rozenberg. Reaction Systems. Fundamenta Informaticae
75(1), 263-280 (2007).

[9] S. Kuhn, I. Ulidowski. Local Reversibility in a Calculus of Covalent Bonding.
Science of Computer Programming 151, 18-47 (2018).

[10] G. Păun. Computing with Membranes, Journal of Computer and System
Sciences 61, 108-143 (2000).

Gabriel Ciobanu

25

[Pin17] G. Michele Pinna. Reversing steps in membrane systems
computations. In Marian Gheorghe, Grzegorz Rozenberg, Arto Sa-
lomaa, and Claudio Zandron, editors, Membrane Computing - 18th
International Conference, CMC 2017, Bradford, UK, July 25-28,
2017, Revised Selected Papers, volume 10725 of Lecture Notes in
Computer Science, pages 245–261. Springer, 2017

The issue of reversibility in computational paradigms has gained interest in
recent years. Membrane systems are a computational device inspired by the
living cell. Each membrane of a system is equipped with a multiset of objects
and a set of rules which consumes the objects in the membrane possibly sending
multisets in the neighboring membranes, being these organized in a tree like
fashion. All the instance of the applicable rules have to be applied in order to
reach the next state.

In this paper we investigate how to reverse steps in membrane systems com-
putations. The problem is that computation steps in membrane systems do not
preserve all the information that has to be used when reversing them, in partic-
ular for each produced object the information whether this has been produced
by a rule residing in the membrane or by one in a neighboring one is lost.

We try here to formalize the relevant information needed, coding the rules
applied and which object they have produced in a memory which is a suitable
labeled partial order. We show that the proposed approach enjoy the so called
loop lemma, which basically assures that the undoing obtained by reversely
applying rules is correct.

G. Michele Pinna

13 Formal Verification of Quantum Systems

[BKN15] Jaap Boender, Florian Kammüller, and Rajagopal Nagara-
jan. Formalization of quantum protocols using Coq. In Proceedings
12th International Workshop on Quantum Physics and Logic, QPL
2015, Oxford, UK, July 15-17, 2015., pages 71–83, 2015

Quantum Information Processing, which is an exciting area of research at the
intersection of physics and computer science, has great potential for influencing
the future development of information processing systems. The building of prac-
tical, general purpose Quantum Computers may be some years into the future.
However, Quantum Communication and Quantum Cryptography are well devel-
oped. Commercial Quantum Key Distribution systems are easily available and
several QKD networks have been built in various parts of the world. The secu-
rity of the protocols used in these implementations rely on information-theoretic
proofs, which may or may not reflect actual system behaviour. Moreover, testing
of implementations cannot guarantee the absence of bugs and errors. This paper
presents a novel framework for modelling and verifying quantum protocols and
their implementations using the proof assistant Coq. We provide a Coq library

26

for quantum bits (qubits), quantum gates, and quantum measurement. As a
step towards verifying practical quantum communication and security protocols
such as Quantum Key Distribution, we support multiple qubits, communica-
tion and entanglement. We illustrate these concepts by modelling the Quantum
Teleportation Protocol, which communicates the state of an unknown quantum
bit using only a classical channel.

[WN16] David Windridge and Rajagopal Nagarajan. Quantum boot-
strap aggregation. In Quantum Interaction - 10th International Con-
ference, QI 2016, San Francisco, CA, USA, July 20–22, 2016, Re-
vised Selected Papers, pages 115–121, 2016

We set out a strategy for quantizing attribute bootstrap aggregation to enable
variance-resilient quantum machine learning. To do so, we utilise the linear
decomposability of decision boundary parameters in the Rebentrost et al. Sup-
port Vector Machine to guarantee that stochastic measurement of the output
quantum state will give rise to an ensemble decision without destroying the
superposition over projective feature subsets induced within the chosen SVM
implementation. We achieve a linear performance advantage, O(d), in addition
to the existing O(log(n)) advantages of quantization as applied to Support Vec-
tor Machines. The approach extends to any form of quantum learning giving
rise to linear decision boundaries.

[PMNW17] Alessandra Di Pierro, Riccardo Mengoni, Rajagopal Na-
garajan, and David Windridge. Hamming distance kernelisation via
topological quantum computation. In Theory and Practice of Natu-
ral Computing - 6th International Conference, TPNC 2017, Prague,
Czech Republic, December 18-20, 2017, Proceedings, volume 10687 of
Lecture Notes in Computer Science, pages 269–280. Springer, 2017

We present a novel approach to computing Hamming distance and its ker-
nelisation within Topological Quantum Computation. This approach is based on
an encoding of two binary strings into a topological Hilbert space, whose inner
product yields a natural Hamming distance kernel on the two strings. Kerneli-
sation forges a link with the field of Machine Learning, particularly in relation
to binary classifiers such as the Support Vector Machine (SVM). This makes
our approach of potential interest to the quantum machine learning community.

[AGN18] Ebrahim Ardeshir-Larijani, Simon J. Gay, and Rajagopal
Nagarajan. Automated equivalence checking of concurrent quantum
systems. ACM Transactions on Computational Logic, 19(4):28:1–
28:32, 2018

The novel field of quantum computation and quantum information has gathered
significant momentum in the last few years. It has the potential to radically
impact the future of information technology and influence the development of
modern society. The construction of practical, general purpose quantum com-
puters has been challenging, but quantum cryptographic and communication

27

devices have been available in the commercial marketplace for several years.
Quantum networks have been built in various cities around the world and a
dedicated satellite has been launched by China to provide secure quantum com-
munication. Such new technologies demand rigorous analysis and verification
before they can be trusted in safety- and security-critical applications. Expe-
rience with classical hardware and software systems has shown the difficulty of
achieving robust and reliable implementations.

We present CCSq, a concurrent language for describing quantum systems,
and develop verification techniques for checking equivalence between CCSq pro-
cesses. CCSq has well-defined operational and superoperator semantics for pro-
tocols that are functional, in the sense of computing a deterministic input-output
relation for all interleavings arising from concurrency in the system. We have
implemented QEC (Quantum Equivalence Checker), a tool that takes the spec-
ification and implementation of quantum protocols, described in CCSq, and
automatically checks their equivalence. QEC is the first fully automatic equiv-
alence checking tool for concurrent quantum systems. For efficiency purposes,
we restrict ourselves to Clifford operators in the stabilizer formalism, but we are
able to verify protocols over all input states. We have specified and verified a
collection of interesting and practical quantum protocols, ranging from quantum
communication and quantum cryptography to quantum error correction.

[WMN18] David Windridge, Riccardo Mengoni, and Rajagopal Na-
garajan. Quantum error-correcting output codes. International
Journal of Quantum Information, 16(8):1840003, 2018

Quantum machine learning is the aspect of quantum computing concerned with
the design of algorithms capable of generalized learning from labeled training
data by effectively exploiting quantum effects. Error-correcting output codes
(ECOC) are a standard setting in machine learning for efficiently rendering the
collective outputs of a binary classifier, such as the support vector machine, as
a multi-class decision procedure. Appropriate choice of error-correcting codes
further enables incorrect individual classification decisions to be effectively cor-
rected in the composite output. In this paper, we propose an appropriate quan-
tization of the ECOC process, based on the quantum support vector machine.
We will show that, in addition to the usual benefits of quantizing machine learn-
ing, this technique leads to an exponential reduction in the number of logic gates
required for effective correction of classification error.

Rajagopal Nagarajan

Rajagopal Nagarajan

References

[AC17] Bogdan Aman and Gabriel Ciobanu. Reversibility in parallel
rewriting systems. J. UCS, 23(7):692–703, 2017.

28

[AC18a] Bogdan Aman and Gabriel Ciobanu. Bonding calculus. Natural
Computing, 17(4):823–832, 2018.

[AC18b] Bogdan Aman and Gabriel Ciobanu. Controlled reversibility in
reaction systems. In Membrane Computing - 18th International
Conference, CMC 2017, Bradford, UK, July 25-28, 2017, Revised
Selected Papers, volume 10725 of Lecture Notes in Computer Sci-
ence, pages 40–53. Springer, 2018.

[AG16] Holger Bock Axelsen and Robert Glück. On reversible Turing ma-
chines and their function universality. Acta Informatica, 53(5):509–
543, 2016.

[AGK16] Holger Bock Axelsen, Robert Glück, and Robin Kaarsgaard. A
classical propositional logic for reasoning about reversible logic cir-
cuits. In Jouko Väänänen, Åsa Hirvonen, and Ruy de Queiroz,
editors, Logic, Language, Information, and Computation. Proceed-
ings, volume 9803 of Lecture Notes in Computer Science, pages
52–67. Springer-Verlag, 2016.

[AGN18] Ebrahim Ardeshir-Larijani, Simon J. Gay, and Rajagopal Nagara-
jan. Automated equivalence checking of concurrent quantum sys-
tems. ACM Transactions on Computational Logic, 19(4):28:1–
28:32, 2018.

[BdL16] Franco Barbanera and Ugo de’ Liguoro. A game interpretation of
retractable contracts. In Alberto Lluch-Lafuente and José Proença,
editors, COORDINATION, volume 9686 of Lecture Notes in Com-
puter Science, pages 18–34. Springer, 2016.

[BDLd15] Franco Barbanera, Mariangiola Dezani-Ciancaglini, Ivan Lanese,
and Ugo de’Liguoro. Retractable contracts. In PLACES, volume
203 of EPTCS, pages 61–72, 2015.

[BGM+18] Kamila Barylska, Anna Gogolinska, Lukasz Mikulski, Anna Philip-
pou, Marcin Piatkowski, and Kyriaki Psara. Reversing computa-
tions modelled by coloured petri nets. In Proceedings of the In-
ternational Workshop on Algorithms & Theories for the Analysis
of Event Data 2018 Satellite event of the conferences: 39th In-
ternational Conference on Application and Theory of Petri Nets
and Concurrency Petri Nets 2018 and 18th International Confer-
ence on Application of Concurrency to System Design ACSD 2018,
Bratislava, Slovakia, June 25, 2018., volume 2115 of CEUR Work-
shop Proceedings, pages 91–111. CEUR-WS.org, 2018.

[BKMP16] Kamila Barylska, Maciej Koutny, Lukasz Mikulski, and Marcin Pi-
atkowski. Reversible computation vs. reversibility in Petri nets. In
Reversible Computation - 8th International Conference, RC 2016,

29

Bologna, Italy, July 7-8, 2016, Proceedings, volume 9720 of Lecture
Notes in Computer Science, pages 105–118. Springer, 2016.

[BKN15] Jaap Boender, Florian Kammüller, and Rajagopal Nagarajan. For-
malization of quantum protocols using Coq. In Proceedings 12th In-
ternational Workshop on Quantum Physics and Logic, QPL 2015,
Oxford, UK, July 15-17, 2015., pages 71–83, 2015.

[BKS16] Tim Boykett, Jarkko Kari, and Ville Salo. Strongly Universal Re-
versible Gate Sets, pages 239–254. Springer International Publish-
ing, Cham, 2016.

[BKS17] Tim Boykett, Jarkko Kari, and Ville Salo. Finite generating sets
for reversible gate sets under general conservation laws. Theoretical
Computer Science, 2017. In press.

[BLd17] Franco Barbanera, Ivan Lanese, and Ugo de’Liguoro. Retractable
and speculative contracts. In COORDINATION, LNCS. Springer,
2017. to appear.

[BMP+16] Kamila Barylska, Lukasz Mikulski, Marcin Piatkowski, Maciej
Koutny, and Evgeny Erofeev. Reversing transitions in bounded
Petri nets. In Proceedings of the 25th International Workshop on
Concurrency, Specification and Programming, Rostock, Germany,
September 28-30, 2016, volume 1698 of CEUR Workshop Proceed-
ings, pages 74–85. CEUR-WS.org, 2016.

[Boy15] Tim Boykett. Closed systems of invertible maps. CoRR,
abs/1512.06813, 2015.

[CGHM18] Martin Holm Cservenka, Robert Glück, Tue Haulund, and Tor-
ben Æ. Mogensen. Data structures and dynamic memory manage-
ment in reversible languages. In Jarkko Kari and Irek Ulidowski,
editors, Reversible Computation. Proceedings, volume 11106 of Lec-
ture Notes in Computer Science, pages 269–285. Springer-Verlag,
2018.

[dFEKM18] David de Frutos Escrig, Maciej Koutny, and Lukasz Mikulski. An
efficient characterization of petri net solvable binary words. In
Applications and Theory of Petri Nets and Concurrency, volume
10877 of Lecture Notes in Computer Science. Springer, 2018.

[dFEKM19] David de Frutos Escrig, Maciej Koutny, and Lukasz Mikulski. Re-
versing steps in Petri nets. In Petri Nets 2019, Proceedings, 2019.
To appear.

[GK18a] Robert Glück and Robin Kaarsgaard. A categorical foundation
for structured reversible flowchart languages. Electr. Notes Theor.
Comput. Sci., 336:155–171, 2018.

30

[GK18b] Robert Glück and Robin Kaarsgaard. A categorical foundation
for structured reversible flowchart languages: Soundness and ade-
quacy. Logical Methods in Computer Science, 14(3), 2018.

[GLMT15] Elena Giachino, Ivan Lanese, Claudio Antares Mezzina, and
Francesco Tiezzi. Causal-consistent reversibility in a tuple-based
language. In PDP, pages 467–475. IEEE Computer Society, 2015.

[GLMT17] Elena Giachino, Ivan Lanese, Claudio Antares Mezzina, and
Francesco Tiezzi. Causal-consistent rollback in a tuple-based lan-
guage. J. Log. Algebr. Meth. Program., 88:99–120, 2017.

[GPY17] E. Graversen, I.C.C. Phillips, and N. Yoshida. Towards a categor-
ical representation of reversible event structures. In Proceedings of
the International Workshop on Programming Language Approaches
to Concurrency- and Communication-cEntric Software (PLACES
16), volume 246 of EPTCS, pages 49–60, 2017.

[GPY18] E. Graversen, I.C.C. Phillips, and N. Yoshida. Event structure
semantics of (controlled) reversible CCS. In Proceedings of Tenth
International Conference on Reversible Computation (RC 2018),
volume 11106 of Lecture Notes in Computer Science, pages 102–
122, 2018.

[GPY19] E. Graversen, I.C.C. Phillips, and N. Yoshida. Towards a categori-
cal representation of reversible event structures. Journal of Logical
and Algebraic Methods in Programming, 104:16–59, 2019.

[GY16] Robert Glück and Tetsuo Yokoyama. A linear-time self-interpreter
of a reversible imperative language. Computer Software, 33(3):108–
128, 2016.

[GY17] Robert Glück and Tetsuo Yokoyama. A minimalist’s reversible
while language. IEICE Transactions on Information and Systems,
E100-D, 2017.

[GY18] Robert Glück and Tetsuo Yokoyama. Special issue on reversible
computing: foundations and software. New Generation Computing,
36(3):143–306, 2018.

[GY19] Robert Glück and Tetsuo Yokoyama. Constructing a binary tree
from its traversals by reversible recursion and iteration. Informa-
tion Processing Letters, 147:32–37, 2019.

[HMG17] Tue Haulund, Torben Ægidius Mogensen, and Robert Glück.
Implementing reversible object-oriented language features on re-
versible machines. In Reversible Computation - 9th International
Conference, RC 2017, Kolkata, India, July 6-7, 2017, Proceedings,
volume 10301 of Lecture Notes in Computer Science, pages 66–73.
Springer, 2017.

31

[HMTT17] Robert M. Hierons, Mohammad Reza Mousavi, Michael Kirkedal
Thomsen, and Uraz Cengiz Türker. Hardness of deriving invertible
sequences from finite state machines. In SOFSEM 2017: Theory
and Practice of Computer Science - 43rd International Conference
on Current Trends in Theory and Practice of Computer Science,
Limerick, Ireland, January 16-20, 2017, Proceedings, volume 10139
of Lecture Notes in Computer Science, pages 147–160. Springer,
2017.

[Kaa19] Robin Kaarsgaard. Inversion, iteration, and the art of dual wield-
ing. In Mathias Soeken and Michael Kirkedal Thomsen, editors,
Reversible Computation - 11th International Conference, RC 2019,
Lausanne, Switzerland, June 24-25, 2019, Proceedings, Lecture
Notes in Computer Science. Springer, 2019.

[KAG17] Robin Kaarsgaard, Holger Bock Axelsen, and Robert Glück. Join
inverse categories and reversible recursion. Journal of Logical and
Algebraic Methods in Programming, 87:33–50, 2017.

[Kar18] Jarkko Kari. Reversible cellular automata: From fundamental clas-
sical results to recent developments. New Generation Comput.,
36(3):145–172, 2018.

[KSW18a] Jarkko Kari, Ville Salo, and Thomas Worsch. Sequentializing cellu-
lar automata. In Cellular Automata and Discrete Complex Systems
- 24th IFIP WG 1.5 International Workshop, AUTOMATA 2018,
Ghent, Belgium, June 20-22, 2018, Proceedings, volume 10875 of
Lecture Notes in Computer Science, pages 72–87. Springer, 2018.

[KSW18b] Jarkko Kari, Ville Salo, and Thomas Worsch. Sequentializing cel-
lular automata. CoRR, abs/1802.06668, 2018.

[KU18] Stefan Kuhn and Irek Ulidowski. Local reversibility in a calculus
of covalent bonding. Sci. Comput. Program., 151:18–47, 2018.

[Lan18] Ivan Lanese. From reversible semantics to reversible debugging. In
Reversible Computation - 10th International Conference, RC 2018,
Leicester, UK, September 12-14, 2018, Proceedings, volume 11106
of Lecture Notes in Computer Science, pages 34–46. Springer, 2018.

[Mez18] Claudio Antares Mezzina. On reversibility and broadcast. In Re-
versible Computation - 10th International Conference, RC 2018,
volume 11106 of Lecture Notes in Computer Science, pages 67–83.
Springer, 2018.

[MK17] Claudio Antares Mezzina and Vasileios Koutavas. A safety and live-
ness theory for total reversibility. In Frédéric Mallet, Min Zhang,
and Eric Madelaine, editors, 11th International Symposium on
Theoretical Aspects of Software Engineering, TASE 2017, Sophia
Antipolis, France, September 13-15, 2017, pages 1–8. IEEE, 2017.

32

[ML19] Lukasz Mikulski and Ivan Lanese. Reversing unbounded Petri nets.
In Petri Nets 2019, Proceedings, 2019. To appear.

[MM16] Doriana Medic and Claudio Antares Mezzina. Static VS dynamic
reversibility in CCS. In Simon J. Devitt and Ivan Lanese, editors,
Reversible Computation - 8th International Conference, RC 2016,
volume 9720 of Lecture Notes in Computer Science, pages 36–51.
Springer, 2016.

[MMPY18] Doriana Medic, Claudio Antares Mezzina, Iain Phillips, and
Nobuko Yoshida. A parametric framework for reversible pi-calculi.
In Proceedings Combined 25th International Workshop on Expres-
siveness in Concurrency and 15th Workshop on Structural Oper-
ational Semantics and 15th Workshop on Structural Operational
Semantics, EXPRESS/SOS, volume 276 of EPTCS, pages 87–103,
2018.

[Mog16] Torben Ægidius Mogensen. RSSA: a reversible SSA form, pages
203–217. Springer, 2016.

[Mog18] Torben Ægidius Mogensen. Reversible garbage collection for
reversible functional languages. New Generation Comput.,
36(3):203–232, 2018.

[MU16] Daniel Morrison and Irek Ulidowski. Direction-reversible self-timed
cellular automata for delay-insensitive circuits. J. Cellular Au-
tomata, 12(1-2):101–120, 2016.

[NPV17] Naoki Nishida, Adrián Palacios, and Germán Vidal. Reversible
computation in term rewriting. CoRR, abs/1710.02804, 2017.

[NPV18] Naoki Nishida, Adrián Palacios, and Germán Vidal. Reversible
computation in term rewriting. J. Log. Algebr. Meth. Program.,
94:128–149, 2018.

[NV19] Naoki Nishida and Germán Vidal. Characterizing compatible view
updates in syntactic bidirectionalization. In Mathias Soeken and
Michael Kirkedal Thomsen, editors, Reversible Computation - 11th
International Conference, RC 2019, Lausanne, Switzerland, June
24-25, 2019, Proceedings, Lecture Notes in Computer Science.
Springer, 2019.

[Pin17] G. Michele Pinna. Reversing steps in membrane systems compu-
tations. In Marian Gheorghe, Grzegorz Rozenberg, Arto Salomaa,
and Claudio Zandron, editors, Membrane Computing - 18th Inter-
national Conference, CMC 2017, Bradford, UK, July 25-28, 2017,
Revised Selected Papers, volume 10725 of Lecture Notes in Com-
puter Science, pages 245–261. Springer, 2017.

33

[PMNW17] Alessandra Di Pierro, Riccardo Mengoni, Rajagopal Nagarajan,
and David Windridge. Hamming distance kernelisation via topo-
logical quantum computation. In Theory and Practice of Natural
Computing - 6th International Conference, TPNC 2017, Prague,
Czech Republic, December 18-20, 2017, Proceedings, volume 10687
of Lecture Notes in Computer Science, pages 269–280. Springer,
2017.

[PP17] Anna Philippou and Kyriaki Psara. Reversible computation in
Petri nets. Technical report, University of Cyprus, 2017.

[PP18] Anna Philippou and Kyriaki Psara. Reversible computation in
Petri nets. In Reversible Computation - 10th International Con-
ference, RC 2018, Leicester, UK, September 12-14, 2018, Proceed-
ings, volume 11106 of Lecture Notes in Computer Science, pages
84–101. Springer, 2018.

[PPR16] Luca Paolini, Mauro Piccolo, and Luca Roversi. A class of re-
versible primitive recursive functions. Electr. Notes Theor. Com-
put. Sci., 322:227–242, 2016.

[PPR18] Luca Paolini, Mauro Piccolo, and Luca Roversi. A certified study
of a reversible programming language. In 21st International Con-
ference on Types for Proofs and Programs, TYPES 2015, May 18-
21, 2015, Tallinn, Estonia, volume 69 of LIPIcs, pages 7:1–7:21.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[PZ17] Luca Paolini and Margherita Zorzi. qpcf: A language for quan-
tum circuit computations. In Theory and Applications of Models
of Computation - 14th Annual Conference, TAMC 2017, Bern,
Switzerland, April 20-22, 2017, Proceedings, volume 10185 of Lec-
ture Notes in Computer Science, pages 455–469, 2017.

[UPY18] Irek Ulidowski, Iain Phillips, and Shoji Yuen. Reversing event
structures. New Generation Computing, 36(3):281–306, Jul 2018.

[WMN18] David Windridge, Riccardo Mengoni, and Rajagopal Nagarajan.
Quantum error-correcting output codes. International Journal of
Quantum Information, 16(8):1840003, 2018.

[WN16] David Windridge and Rajagopal Nagarajan. Quantum bootstrap
aggregation. In Quantum Interaction - 10th International Confer-
ence, QI 2016, San Francisco, CA, USA, July 20–22, 2016, Revised
Selected Papers, pages 115–121, 2016.

34

