
WG1 Year-End Report

COST Action IC1405 Reversible Computation

Editors: Iain Phillips and Michael Kirkedal Thomsen

May 2018

1



List of contributors

Gabriel Ciobanu
Robert Glück
Robin Kaarsgaard
Claudio Antares Mezzina
 Lukasz Mikulski
Rajagopal Nagarajan
Luca Paolini
Irek Ulidowski
German Vidal
Thomas Worsch

2



Contents

1 Introduction 4

2 Finite-State Computing Models 4

3 Reversible Cellular Automata 4

4 Theory of Programming Languages 4

5 Model-based Testing 6

6 Term Rewriting 6

7 Categorical models and semantics 6

8 Petri Nets 7

9 Process Calculi 8

10 Membrane Computing 9

11 Formal Verification of Quantum Systems 10

3



1 Introduction

This report covers research carried out with the aid of COST Action IC1405
on Reversible Computation during the third grant period GP3 (May 2017 to
April 2018); and in particular research relating to the topics covered by Working
Group WG1 Foundations. We have mostly followed the structure of the State of
the Art report for WG1, but we have added the topics of ‘Theory of Program-
ming Languages’ and ‘Membrane Computing.’ Note that work on Programming
Languages is also to be found in the Year-End Report of WG2 Software and
Systems.

Iain Phillips and Michael Kirkedal Thomsen

2 Finite-State Computing Models

Work continues but there are no new publications to report for the third grant
period GP3.

3 Reversible Cellular Automata

[KSW18] Jarkko Kari, Ville Salo, and Thomas Worsch. Sequential-
izing cellular automata. CoRR, abs/1802.06668, 2018

The work by Jarkko Kari, Ville Salo and Thomas Worsch on the application
of reversible block rules for CA in an asynchronous setting has led to a first
cornerstone.

We now have a precise characterization of the one-dimensional CA that can
be realized by applying a reversible block rule sequentially in a “full sweep from
left to right” (or right to left) at all positions. It turns out that not all reversible
CA can be realized, but also some non-reversible ones. It is decidable whether
a CA can be realized that way or not.

Thomas Worsch

4 Theory of Programming Languages

[PPR18] Luca Paolini, Mauro Piccolo, and Luca Roversi. A certified
study of a reversible programming language. In 21st International
Conference on Types for Proofs and Programs, TYPES 2015, May
18-21, 2015, Tallinn, Estonia, volume 69 of LIPIcs, pages 7:1–7:21.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018

We advance in the study of the semantics of Janus, a C-like reversible pro-
gramming language. Our study makes utterly explicit some backward and for-
ward evaluation symmetries. We want to deepen mathematical knowledge about

4



the foundations and design principles of reversible computing and programming
languages. We formalize a big-step operational semantics and a denotational
semantics of Janus. We show a full abstraction result between the operational
and denotational semantics. Last, we certify our results by means of the proof
assistant Matita.

[PZ17] Luca Paolini and Margherita Zorzi. qpcf: A language for
quantum circuit computations. In Theory and Applications of Mod-
els of Computation - 14th Annual Conference, TAMC 2017, Bern,
Switzerland, April 20-22, 2017, Proceedings, volume 10185 of Lecture
Notes in Computer Science, pages 455–469, 2017

We propose qPCF, a functional language able to define and manipulate
quantum circuits in an easy and intuitive way. qPCF follows the tradition of
“quantum data & classical control” languages, inspired to the QRAM model.
Ideally, qPCF computes finite circuit descriptions which are offloaded to a quan-
tum co-processor (i.e. a quantum device) for the execution. qPCF extends PCF
with a new kind of datatype: quantum circuits. The typing of qPCF is quite
different from the mainstream of “quantum data & classical control” languages
that involves linear/exponential modalities. qPCF uses a simple form of de-
pendent types to manage circuits and an implicit form of monad to manage
quantum states via a destructive-measurement operator.

The following publication relates to GP2:

[PPR16] Luca Paolini, Mauro Piccolo, and Luca Roversi. A class of
reversible primitive recursive functions. Electr. Notes Theor. Com-
put. Sci., 322:227–242, 2016

Reversible computing is bi-deterministic which means that its execution is
both forward and backward deterministic, i.e. next/previous computational step
is uniquely determined. Various approaches exist to catch its extensional or
intensional aspects and properties. We present a class RPRF of reversible func-
tions which holds at bay intensional aspects and emphasizes the extensional
side of the reversible computation by following the style of Dedekind-Robinson
Primitive Recursive Functions. The class RPRF is closed by inversion, can only
express bijections on integers — not only natural numbers —, and it is expres-
sive enough to simulate Primitive Recursive Functions, of course, in an effective
way.

Luca Paolini

The following publication relates to GP2:

[HMG17] Tue Haulund, Torben Ægidius Mogensen, and Robert Glück.
Implementing reversible object-oriented language features on reversible
machines. In Reversible Computation - 9th International Confer-
ence, RC 2017, Kolkata, India, July 6-7, 2017, Proceedings, volume
10301 of Lecture Notes in Computer Science, pages 66–73. Springer,
2017

5



We extended the reversible language Janus with support for class-based object-
oriented programming, class inheritance and subtype-polymorphism. We de-
scribe how to implement these features on reversible hardware - with emphasis
on the implementation of reversible dynamic dispatch using virtual method ta-
bles. Our translation is effective (i.e. garbage-free) and we demonstrate its prac-
ticality by implementation of a fully-featured compiler targeting the reversible
assembly language PISA.

Robert Glück

5 Model-based Testing

Work continues but there are no new publications to report for the third grant
period GP3.

6 Term Rewriting

[NPV17] Naoki Nishida, Adrián Palacios, and Germán Vidal. Re-
versible computation in term rewriting. CoRR, abs/1710.02804, 2017

Essentially, in a reversible programming language, for each forward computation
from state S to state S′, there exists a constructive method to go backwards
from state S′ to state S. Besides its theoretical interest, reversible computation
is a fundamental concept which is relevant in many different areas like cellular
automata, bidirectional program transformation, or quantum computing, to
name a few. In this work, we focus on term rewriting, a computation model that
underlies most rule-based programming languages. In general, term rewriting
is not reversible, even for injective functions; namely, given a rewrite step t1 →
t2, we do not always have a decidable method to get t1 from t2. Here, we
introduce a conservative extension of term rewriting that becomes reversible.
Furthermore, we also define two transformations, injectivization and inversion,
to make a rewrite system reversible using standard term rewriting. We illustrate
the usefulness of our transformations in the context of bidirectional program
transformation.

To appear in the Journal of Logical and Algebraic Methods in Programming.

German Vidal

7 Categorical models and semantics

[GK18] Robert Glück and Robin Kaarsgaard. A categorical foun-
dation for structured reversible flowchart languages. Electr. Notes
Theor. Comput. Sci., 336:155–171, 2018

6



Structured reversible flowchart languages is a class of imperative reversible
programming languages allowing for a simple diagrammatic representation of
control flow built from a limited set of control flow structures, as ordinary
structured flowcharts allow for conventional languages. This class includes the
reversible programming language Janus (without recursion), as well as more
recently developed reversible programming languages such as R-CORE and R-
WHILE.

In the present paper, we develop a categorical foundation for this class of
languages based on inverse categories with joins. We generalize the notion of ex-
tensivity of restriction categories to one that may be accommodated by inverse
categories, and use the resulting decision maps to give a reversible represen-
tation of predicates and assertions. This leads to a categorical semantics for
structured reversible flowcharts, from which we show that a program inverter
can be extracted. Finally, we exemplify our approach by the development of
a small structured reversible flowchart language, use our framework to both
straightforwardly give it semantics and derive fundamental theorems about it,
and discuss further applications of decisions in reversible programming.

Robin Kaarsgaard

8 Petri Nets

[dFEKM18] David de Frutos Escrig, Maciej Koutny, and Lukasz
Mikulski. An efficient characterization of petri net solvable binary
words. In Applications and Theory of Petri Nets and Concurrency,
volume 10877 of Lecture Notes in Computer Science. Springer, 2018

The work by David de Frutos Escrig, Maciej Koutny and Lukasz Mikulski im-
proved the characterization of binary Petri net solvable words and defined on
their base reversible binary words.

We present a simple characterization of the set of Petri Net solvable binary
words, that states that these are exactly the extensions of the prefixes of Petri
Net cyclic solvable words, by some prefix xk, where x can be any letter of
considered binary alphabet, and k is any natural number. As a byproduct of
the characterization, we also present a linear time algorithm to decide whether
a word is solvable. The key idea is that the connection with the set of cyclic
solvable words induces a regularity character, so that we just need to look for
possible irregularities, and this can be done in a structural way, at the end
producing the surprising linearity of the obtained decision algorithm. Finally,
we utilize the discussed results in order to characterize (Petri net) reversible
binary transition systems.

 Lukasz Mikulski

7



9 Process Calculi

[MM16] Doriana Medic and Claudio Antares Mezzina. Static VS
dynamic reversibility in CCS. In Simon J. Devitt and Ivan Lanese,
editors, Reversible Computation - 8th International Conference, RC
2016, volume 9720 of Lecture Notes in Computer Science, pages 36–
51. Springer, 2016

In the literature there exist two reversible variants of CCS. Reversible CCS
(RCCS), proposed by Danos and Krivine, enacts reversibility by means of mem-
ory stacks. Ulidowski and Phillips proposed a general method to reverse a pro-
cess calculus given in a particular SOS format, by exploiting the idea of making
all the operators of a calculus static. CCSK is then derived from CCS with this
method. Hence a natural question arises. Are these two reversible CCSs simi-
lar? In [MM16] a positive answer is given to this question, where an encoding
from CCSK to RCCS and its opposite are presented.

[MK17] Claudio Antares Mezzina and Vasileios Koutavas. A safety
and liveness theory for total reversibility. In Frédéric Mallet, Min
Zhang, and Eric Madelaine, editors, 11th International Symposium
on Theoretical Aspects of Software Engineering, TASE 2017, Sophia
Antipolis, France, September 13-15, 2017, pages 1–8. IEEE, 2017

We study the theory of safety and liveness in a reversible calculus where re-
ductions are totally ordered and rollbacks lead systems to past states. Liveness
and safety in this setting naturally correspond to the should-testing and inverse
may-testing preorders, respectively. In reversible languages, however, the nat-
ural models of these preorders would need to be based on both forward and
backward transitions, thus offering complex proof techniques for verification.
Here we develop novel fully abstract models of liveness and safety which are
based on forward transitions and limited rollback points, giving rise to consid-
erably simpler proof techniques. Moreover, we show that, with respect to safety,
total reversibility is a conservative extension to CCS. With respect to liveness,
we prove that adding total reversibility to CCS distinguishes more systems.
To our knowledge, this work provides the first testing theory for a reversible
calculus, and paves the way for a testing theory for causal reversibility.

We have identified two sufficient properties for our safety and liveness the-
ories to apply to any reversible language. In fact, the first property holds in
languages with controlled, causal reversibility and therefore our safety theory
immediately applies to them. The problem of determining whether the second
property applies to remains open. We view the identification of this property
as a first important step towards the development of a liveness theory for con-
trolled, causal reversibility.

Claudio Antares Mezzina

[KU18] Stefan Kuhn and Irek Ulidowski. Local reversibility in a
calculus of covalent bonding. Sci. Comput. Program., 151:18–47,
2018

8



The paper introduces a process calculus with a new prefixing operator that
allows us to model locally controlled reversibility. Actions can be undone spon-
taneously, as in other reversible process calculi, or as pairs of concerted actions,
where performing a weak action forces undoing of another action. The new op-
erator in its full generality allows us to model out-of-causal order computation,
where effects are undone before their causes are undone, which goes beyond
what typical reversible calculi can express. However, the core calculus, which
uses only the reduced form of the new operator, is well behaved as it satisfied
causal consistency. We demonstrate the usefulness of the calculus by modelling
the hydration of formaldehyde in water into methanediol, an industrially im-
portant reaction, where the creation and breaking of some bonds are examples
of locally controlled out-of-causal order computation.

Irek Ulidowski

10 Membrane Computing

[AC17] Bogdan Aman and Gabriel Ciobanu. Reversibility in parallel
rewriting systems. J. UCS, 23(7):692–703, 2017

[AC18] Bogdan Aman and Gabriel Ciobanu. Controlled reversibility
in reaction systems. In Membrane Computing - 18th International
Conference, CMC 2017, Bradford, UK, July 25-28, 2017, Revised
Selected Papers, volume 10725 of Lecture Notes in Computer Science,
pages 40–53. Springer, 2018

Natural computing is a complex field of research dealing with models and com-
putational techniques inspired by nature that helps us in understanding the
biochemical world in terms of information processing. The articles [AC17]
and [AC18] investigate the reversibility of biochemical reactions in two impor-
tant theories of natural computing inspired by the functioning of living cells,
namely in membrane computing and in reaction systems. Membrane computing
deals with multisets of symbols processed in the compartments of a membrane
structure according to some multiset rewriting rules; some of the symbols (pre-
sented with their multiplicity within the regions delimited by membranes) evolve
in parallel according to the rules associated with their membranes, while the oth-
ers remain unchanged and can be used in the subsequent steps. The situation is
different in reaction systems; these systems represent a qualitative model, and
so they deal with sets rather than multisets. Two major assumptions distinguish
the reaction systems from the membrane systems:

(i) threshold assumption claiming that if a resource is present in the system,
then it is present in a ”sufficient amount” such that several reactions need-
ing such a resource are not in conflict (this means that reaction systems have
actually an infinite multiplicity for their resources);

(ii) no permanency assumption claiming that an entity disappears from the
current state unless it is produced by one of the reactions enabled in that state.

9



The important innovations of these articles are given by adding the reverse
rules to the initial set of rules, as well as by adding an external control specified
by using a special symbol informing the system that a rollback is needed. Their
contribution is done by several theoretical results relating the evolutions of these
systems to their reversible extensions.

Gabriel Ciobanu

11 Formal Verification of Quantum Systems

[PMNW17] Alessandra Di Pierro, Riccardo Mengoni, Rajagopal Na-
garajan, and David Windridge. Hamming distance kernelisation via
topological quantum computation. In Theory and Practice of Natu-
ral Computing - 6th International Conference, TPNC 2017, Prague,
Czech Republic, December 18-20, 2017, Proceedings, volume 10687 of
Lecture Notes in Computer Science, pages 269–280. Springer, 2017

We present a novel approach to computing Hamming distance and its ker-
nelisation within Topological Quantum Computation. This approach is based on
an encoding of two binary strings into a topological Hilbert space, whose inner
product yields a natural Hamming distance kernel on the two strings. Kerneli-
sation forges a link with the field of Machine Learning, particularly in relation
to binary classifiers such as the Support Vector Machine (SVM). This makes
our approach of potential interest to the quantum machine learning community.

Rajagopal Nagarajan

References

[AC17] Bogdan Aman and Gabriel Ciobanu. Reversibility in parallel
rewriting systems. J. UCS, 23(7):692–703, 2017.

[AC18] Bogdan Aman and Gabriel Ciobanu. Controlled reversibility in
reaction systems. In Membrane Computing - 18th International
Conference, CMC 2017, Bradford, UK, July 25-28, 2017, Revised
Selected Papers, volume 10725 of Lecture Notes in Computer Sci-
ence, pages 40–53. Springer, 2018.

[dFEKM18] David de Frutos Escrig, Maciej Koutny, and Lukasz Mikulski. An
efficient characterization of petri net solvable binary words. In
Applications and Theory of Petri Nets and Concurrency, volume
10877 of Lecture Notes in Computer Science. Springer, 2018.

[GK18] Robert Glück and Robin Kaarsgaard. A categorical foundation
for structured reversible flowchart languages. Electr. Notes Theor.
Comput. Sci., 336:155–171, 2018.

10



[HMG17] Tue Haulund, Torben Ægidius Mogensen, and Robert Glück.
Implementing reversible object-oriented language features on re-
versible machines. In Reversible Computation - 9th International
Conference, RC 2017, Kolkata, India, July 6-7, 2017, Proceedings,
volume 10301 of Lecture Notes in Computer Science, pages 66–73.
Springer, 2017.

[KSW18] Jarkko Kari, Ville Salo, and Thomas Worsch. Sequentializing cel-
lular automata. CoRR, abs/1802.06668, 2018.

[KU18] Stefan Kuhn and Irek Ulidowski. Local reversibility in a calculus
of covalent bonding. Sci. Comput. Program., 151:18–47, 2018.

[MK17] Claudio Antares Mezzina and Vasileios Koutavas. A safety and live-
ness theory for total reversibility. In Frédéric Mallet, Min Zhang,
and Eric Madelaine, editors, 11th International Symposium on
Theoretical Aspects of Software Engineering, TASE 2017, Sophia
Antipolis, France, September 13-15, 2017, pages 1–8. IEEE, 2017.

[MM16] Doriana Medic and Claudio Antares Mezzina. Static VS dynamic
reversibility in CCS. In Simon J. Devitt and Ivan Lanese, editors,
Reversible Computation - 8th International Conference, RC 2016,
volume 9720 of Lecture Notes in Computer Science, pages 36–51.
Springer, 2016.

[NPV17] Naoki Nishida, Adrián Palacios, and Germán Vidal. Reversible
computation in term rewriting. CoRR, abs/1710.02804, 2017.

[PMNW17] Alessandra Di Pierro, Riccardo Mengoni, Rajagopal Nagarajan,
and David Windridge. Hamming distance kernelisation via topo-
logical quantum computation. In Theory and Practice of Natural
Computing - 6th International Conference, TPNC 2017, Prague,
Czech Republic, December 18-20, 2017, Proceedings, volume 10687
of Lecture Notes in Computer Science, pages 269–280. Springer,
2017.

[PPR16] Luca Paolini, Mauro Piccolo, and Luca Roversi. A class of re-
versible primitive recursive functions. Electr. Notes Theor. Com-
put. Sci., 322:227–242, 2016.

[PPR18] Luca Paolini, Mauro Piccolo, and Luca Roversi. A certified study
of a reversible programming language. In 21st International Con-
ference on Types for Proofs and Programs, TYPES 2015, May 18-
21, 2015, Tallinn, Estonia, volume 69 of LIPIcs, pages 7:1–7:21.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[PZ17] Luca Paolini and Margherita Zorzi. qpcf: A language for quan-
tum circuit computations. In Theory and Applications of Models
of Computation - 14th Annual Conference, TAMC 2017, Bern,

11



Switzerland, April 20-22, 2017, Proceedings, volume 10185 of Lec-
ture Notes in Computer Science, pages 455–469, 2017.

12


